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Abstract—The diffusion equation for the mutual non-stationary isochoric and isothermal concentration
diffusion of two real gases is solved by perturbation calculus. In vicw of corresponding experiments with a
Loschmidt diffusion apparatus, pressure and temperature gradients are assumed to be negligible. The
concentration dependence of the diffusion coefficient D according to gas kinctic theory, the pressure change
during gas mixing, gas sorption by the seals of the diffusion apparatus and the corresponding stream velocities
produced are taken into account as small perturbations in a physically reasonable manner. The results show
that the complete concentration dependence of D may be determined by only one or two non-stationary
diffusion experiments with pure gases, which is the great advantage of this mcthod over all previously used
methods.

NOMENCLATURE
a(x,), function in A(x,) of kinctic gas thcory;
a,a,,d,,d4, Mass ratio expressions in A(x,) of
kinetic gas theory;

a,, QCx+ /L, x=nr=0,1,...;

A, series coefficients in Section 3.4;

A, abbreviation in Section 4;

At,, ratio of collision integrals;

A, scrics expressions;

b(x,), function in A(x,) of kinetic gas theory;
b,, 2xn/L, x =n,m=1,2,...;

B, series cocfficients in Section 3.4;

B, Ap(t)Ko/2 in Scction 4;

B, B;,, B4, second virial coefficients;

B, second virial cocfficient of mixture,
By+Pax;+Bixi;

< molar density;

¢y, €2 €3, fitting coelficients of estimated A(x,);

p» Dy(ca+2¢,x7);

Cor (PoD/RT)(B2+2B,xT);

C,C, constants, i =0,1,2,3,4;

Ct,, ratio of collision integrals;

C: C8,  cocfficients of perturbation calculus;

D, binary mutual diffusion coeflicient,
Dy =Dyy;

Dy, nD,;

D, D, first and second kinectic gas theory
approximation of D;

E, series coefficients;

Jo, perturbation functions, i =0, 1, 2, 3, 4;

Lo exp(—aiDt)a,;

F, scries cocfficients;

F(z,t), perturbation term of the diffusion equa-

tion Fo+F,+ Fy;
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Fp, F., Fy, perturbation terms of the diffusion

cquation;
Fu), perturbation functions, i = 0, 1,2, 3,4;
G series coefficients;

9m 9%, g1, (even) Fourier cocllicients of x,(z,1);

G,, (even) Fourier coefficients of F(z,1);

h,, exp(—a2Di);

H, series coefficients;

I, serics expression;;

k, Boltzmann constant;

ky, K/m= K t/N,;

3 (d In p/dt)y;

K(), (K /N A)dp/di)g;

Ko, {RT + po[ BxT)+ B (Ax)*/81} ™15

K,,K,, rates of formation of species 1, 2 in unit
timc and unit volume;

L, length of diffusion ccll;

nya, reduced mass;

M, ratio of molar masses, M,/M,;

n,ny,n,, particle number densitics ;

N, Avogadro constant;

D, pressure;

Pos initial pressure;

P,, P, P,,, expressions in A(x) of kinetic gas
theory;

0.,0,,0Q,,, ecxpressions in A(x;) of kinctic gas
theory;

T, position vector;

r, two-particle distance;

R, molar gas constant;

S, symbol for series expressions
S,5%,87,83m 84
q.r nr nr

t, time;

T, temperature;

T, reduced temperature, kT /ey, ;

u, 12, 1M, (odd) Fourier cocfficients of x,(z,1);

U.. (odd) Fouricr cocflicients of F(z,1);

v,v4,0;, molar volume;

vy, Uy, z-component of strcam velocity (only in

Scction 2.2);
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Vi, Vo, volumes of the two diffusion half-cells;

W, z-component of average particle velocity;

W,, W, z-components of particle diffusion
velocities ;

X, coordinate (in dircction of optical axis,
only used in Section 2.1);

X, B,.p/RT;

Xo, B,.po/RT;

Xy, mole fraction of heavier gas component;

X3, mole fraction of lighter gas component,
1—xy;5

xi, solution of ideal-gas diffusion equation;

X145 X1 initial mole fractions;

X7, mean mole fraction, (xy,+x,,)/2;

x{2, x{"3), perturbation contributions to x, ;

¥ coordinate (shearing direction of diffusion
cell, only used in Section 2.1);

¥ 2(xlu—xlo)/L;

z, coordinate (direction of diffusion);

Za, coordinate of the point of observation of
diffusion.

Greek symbols

B By, + B2y —2By,;

Bas 2By, —Ba,);

B, B;s;

AX, X1u— X105

A,A(x,), kinetic gas theory correction for the

concentration dependence of D;

Ax,, perturbation contributions to x,
(measured);

Ap, P—Po;

&€y 2 potential well depth;

a, potential well distance parameter;

X, L4, Z,, serics expressions;

T, reference time, I12/7%D;

o, intermolecular pair potential;

Q%% reduced collision integrals of kinetic gas
theory.

Subscripts

D, denotes diffusion terms;

g, denotes  even-parity functions or
constants;

K, denotes sorption terms;

m, denotes quantities of the gas mixture or
molar quantities;

m, denotes corresponding summation index;;

M, denotes mixing-volume terms;

n, denotes corresponding summation index ;

o, denotes quantities of upper diffusion half-
cell;

r, denotes corresponding summation index ;

u, denotes quantities of lower diffusion half-
cell;

W, denotes average-particle-velocity terms;

1, denotes quantities of heavier gas
component;

2, denotes quantities of lighter gas
component.

K. KErRL and M. JESCHECK

1. INTRODUCTION

Tuis paper supplements and improves the doctoral
thesis of Jescheck [1]. The knowledge of accurate and
reliable gas diffusion coefficients D is very important for
the solution of many problems in technical and natural
sciences. The Chapman-Enskog theory, for instance,
shows [2-5] that, contrary to other transport
coeflicients of binary gascous mixtures, reliable
information about the mutual intermolecular interac-
tion pair-potential ¢(1, 2) of chemically different atoms
or molecules, 1 and 2, may successfully be extracted out
of accurately measured binary gas diffusion coefficients
D. For this purpose, the dependence of D on both the
temperature and the concentration of the mixture must
be investigated with great care. Diffusion experiments
of this kind, which give D with permissible uncertainty
of at most 19, are scarce in the literature [6-9]. In
addition, gasdiffusionexperimentsare notsimple todo,
which is one reason why only a few laboratories have
dealt with such investigations. Most workers in this
field tend to neglect the concentration dependence of D
as ‘unimportant’, although this effect is predicted by the
Chapman-Enskog thcory to be up to 13% in the
limiting case of hard-sphere molecules.

The uncertainty of different methods for measuring
gas diffusion coefficients has been investigated [7-9].
Among other things, our examinations [8,9] have
shown that the measured temperature dependence of D
seems to be different according to whether the diffusion
measurements are non-stationary, quasi-stationary or
stationary. As another result we find that the absolute
measurement of D in observing the non-stationary
diffusion of two gases or gas mixtures in a Loschmidt
shearingcellat a fixed point of observation z, should be
the most reliable measuring procedure. Thereby the
density p(t), and therefore the composition of the binary
gas mixture, should be analysed continuously in time ¢
at z, with the aid of an optical interferometer to avoid
disturbances of the diffusion experiment. Such a
method has been developed and described [10, 11].

Toinvestigate the concentration dependence of D at
fixed temperature T with this method, the mutual
diffusion of quasi-ideal gas mixtures of nearly the same
composition was hitherto studied with few exceptions.
The result of such experiments is only an arithmetic
mean of D, which may be associated with the mecan
concentration of the mixture after diffusion. This
procedure of measuring the concentration dependence
of D was first applied by Lonius [12] in the case of gas
diffusion and is the only method in literature till now.
The advantage of this method is the fact that the ideal
unperturbed non-stationary diffusion may be de-
scribed by a simple diffusion equation, the well-known
Fick’s sccond law, which possesses known solutions for
many initial and boundary conditions [13,14].
Disadvantages of the Lonius method are the
uncertainties caused by averaging D, the use of gas
mixtures with possible errors in their production and
composition (which gives an additional factor of 2 or
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more in the uncertainty of D {8, 9]), and the great
number of very time-consuming independent diffusion
experiments which must be carried out to get a
reasonable dependence of D in the whole range of the
mole fraction, 0 < x, < 1, of the chemical species 1 (at
least 10 experiments).

This procedure is, however, incfficient in comparison
with our method. We have already mentioned [9] that
the wholeinformation ofthe concentration dependence
of D should be embedded directly in the measuring
signal (interferogram), since the composition of the gas
mixture is measured at each time t at the fixed point of
observation z,. This great advantage is not inherent in
any other known method for measuring gas diffusion
cocfficients and was obviously not recognized by other
authors [185, 16] who have used the same experimental
method.

Understanding this advantage suggests the investiga-
tion of the diffusion of two pure gases by observing the
decrease of the mole fraction x,; in one-half of the
Loschmidt cell and simultaneously (or in another
independent experiment with the same physical
conditions) the increase of x, in the other half-cell. In
this way the concentration dependence of D could be
measured in the entire mole fraction range 0 < x; < 1
of component 1 in only onc or two diffusion
experiments, a procedure which would considerably
minimize the uncertainty of the measured D and the
quantity of measurements necessary.

The only disadvantage of this method is the fact that
the diffusion equation is more complicated than Fick’s
simple law, since the results on mixing two imperfect
gases under the conditions of constant temperature and
cell volume must be known at every time ¢. Therefore,
simultaneously with the change of concentration at the
point of observation z,, the accompanying préssure
changein the diffusion cell was measured. As well as this
mixing volume clfect, an additional pressure effect may
occur due to gas sorption at the walls of the diffusion
cell. This sorption pressure effect may be separated
from the entirely measured pressure change Ap(t) if the
thermodynamics of mixing of the two gases is known.
On the other hand, the thermodynamics of mixing may
be determined by diffusion experiments if the sorption
effect vanishes. Experiments of this kind should
therefore give self-consistent information on the
kinetics and thermodynamics of mixing two gases with
previously unknown mixing conditions. Thisisanother
great advantage of our method.

Ljunggren [15] was the first to introduce the pure
mixing volume effect in the solution of the non-
stationary diffusion equation in the case of two diffusing
gas mixtures of nearly the same composition. Gavalas
et al. [17] have used the corresponding pressure effect
to determine binary diffusion coefficients D at elevated
gas densities. Beside this mixing volume effect Gotoh et
al.[16] have considered gas sorption by the seals at the
ends and in the shearing plane of the Loschmidt
diffusion cell, but their information about sorption was
poor, since they only measured the static pressures at
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the beginning and at the end of an experiment. They
have also considered the concentration dependence of
D, but, as a result of a very complicated perturbation
calculus with four free adjustable parameters, they
obtained only one diffusion coefficient D, which was
constant in the entire mole fraction range investigated,
0 < x,; £ 0.5, and was associated with the mean mole
fraction xT = 0.5in the diffusion cell with diffusing pure
gases. In some cases, however, they noticed that
calculated diffusion coefficients D of this kind are of
little use in view of their estimated experimental
uncertainties. In these cases they have repeated their
measurements with two gas mixtures of adequate
composition and obtained more reliable constant
values of D (Section 3.3.3).

This paper will deal with the solution of the complete
diffusion equation including the effects of the mixing
volume, the concentration dependence of D, and
sorption. These effects will be considered as small
perturbations, which are superposed on the proper
concentration diffusion effect. The perturbation
calculus used is of higher order than the calculus of
Gotoh et al. [16]. Throughout the paper numerical
values are given for the gas pair C(CH,),—Ar, one of the
most imperfect binary systems investigated by us.
Based on this work, further publications will deal with
experimental results of corresponding diffusion
experiments. In all cases the dilfusion thermoeflect is
completely negligible.

2. THE DIFFUSION EQUATION

2.1. Experimental conditions

Figure 1 shows schematically the diffusion shearing
cell used. In Fig. 1(a) the apparatus is in the filling
position, the two identical half-cells of length 1./2 and
rectangular cross-scction are separated (gas-tight) from
cach other. In this position the two gases or gas
mixtures are put into the evacuated half-cells up to the
same initial pressure p, at the same temperature T. X
and x,, are the initial mole fractions of the heawer

0 z t>0
t= >
OL
2
X
PO
T X, (Z,}
o=
;,o.z_;:(t) h .
| shearing
Y T plane
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2

ta filling position 16 diffusion position

F1G. 1. Schematic representation of the Loschmidt diffusion
cell used.
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component 1 in the lower (x;,) and the upper (x,,)
half-cell. Since x;+x, =1 and D, = D,, = D only
the diffusion of this heavier component 1 need
be considered. The gravitation of earth acts in the
(—z)-direction. To avoid density convection of the
gases, the condition x;, > x,, should be fulfilled.

The gas-tightening of the two half-cells to each other
and to the surroundings is achicved by using a thin film
of silicon grease and two Viton O-rings, which are
incorporated into the shearing plane of the half-cell
with the two opposite optical windows at |z,] = L/3.
These construction features are important to the
understanding of gas sorption phenomena (Scction
3.3.3).

At time t = O the open sites of the two half-cells are
connected by shearing the half-cell without windows
pncumatically in the (— y)-direction over the half-cell
with the windows. The corresponding diffusion
arrangement of the apparatusisshownin Fig. I(b). The
change of the mole fraction x,(z4,?) is continuously
measured for times ¢ > 0 at the point of observation z,
by means of a Michelson interferometer. The optical
axis is directed in the x-direction perpendicular to the
plane drawn, and the geometrical effective Jength of the
light rays is I{twice the window distance of the diflusion
cell in the case of a Michelson interferometer).

Immediatcly after connecting the two half-cells, the
pressure p changes from the initial pressure py to p =
po+Ap(t) due to the mixing volume and gas sorp-
tion eflects, since the entire volume of the diffusion
cell remains constant during an experiment. If the diffu-
sion of two pure gases (x,, = 1,x,, = 0)is investigated
with a diffusion cell as in Fig. 1, only the dependence
D(x,) for the mole f{raction range x;,=12
x,(—=L/3,1) 2x,(—L/3,c0) = 0.5 can be observed. By
inverting the entire diffusion cell, however, onc
gets from a second diffusion experiment with the same
physical conditions a value of D(x,) for the mole
fraction range x,, = 0 < x,(+L/3,1) < x,(+ L/3, 0)
~ 0.5. In this experiment the point of observation
z, = + L/3 is now in the upper half-cell, the arrange-
ment used by Gotoh et al. [16].

2.2. Some results of the kinetic theory of gases

In deriving the complete diffusion equation in the
next section, the validity of the Chapman-Enskog
kinetic theory of gases is assumed. Moreover, the
diffusion coefficient D will be determined only by pure
concentration diffusion. Gradients in temperature and
pressure in the gas mixture and external forces (e.g.
gravitational forces) as driving forces for particle
currents are assumed to be negligible. These conditions
arefulfilledin our experiments within the uncertainty of
the measurements [1, 10, 11].

Since in the diffusion experiments described,
phenomena of friction or acceleration are negligible,
the diffusion is reasonably examined by means of the
frame of reference of the average particle velocity w(r, 1)
[2-5].Inthe case of Fig. 1, only the z-components of the
velocities must be taken into account, which therefore

K. KeErL and M. JEscHrck

arc not marked explicitly in the following considera-
tions. In the case of two diffusing species we have

1
w(z,t) = <’_1) (nyo +n303) = x40, + x50, @.n

n(z,t) = n,(z,1)+nyz,¢) is the particle number density
of the mixture, v{z,t) is the z-component of the
molecular (mass average) or stream velocity, x{z,t)
= n/nthe mole fraction and n{z, t} the particle number
density of the species i = 1,2. The particle diffusion
velocity Wz, 1) is therefore given by

Wiz, 1) = vfz, 1) —w(z,1). (2.2)
According to equations (2.1) and (2.2),
n W, +n,1, =0. 2.3)

Thesum of the particle diffusion currents, 1;}¥;, through
a frame perpendicular to the stream direction z
thercfore vanishes if this frame of reference is moving
with a velocity w(z, ¢) within the gas mixture. By means
of equation (2.2) the equation of continuity for each
species i is given by 2, 3]

an,

0 on; 0 .
ol + a(n,-v,-) == + e [n(w+ W)l =K. (24

K, is the rate of formation of the chemical species i in
unit time and unit volume. By summing equation (2.4)
for both species and using equation (2.3) the following
equation of continuity for the entirc gas mixture is
obtained:

on 0
—+ —(nw) = K, +K,. 2.5
a,+az('m) 1T K; 2.5
Inserting x, =n,/n in equation (2.4) gives, with
equation(2.5), the equation for the total change of x; in
the w-reference system,

dx,\ _ dx, +w6x,
de J,, o Oz

1 d
= —;E(nIWI)
1
+'—I[K,—x,(K1+K2)]. (2.6)

In this general diffusion equation, the total (substantial)
derivative (dx,/dt),, describes the change of x, with
time t within a volume element, which is moving with
velocity win z-direction. Therefore dx,/ét is the change
of x, with time t which will be observed at a fixed point
of observation z = z, of the diffusion cell.

In the case of pure concentration diffusion the
particle diffusion current n,1¥; of species 1 in the
z-direction is given by the following expression of the
Chapman-Enskog theory [3, 4]:

W = —nD?—ﬂ. (V)]
0z

The second gas kinetic approximation of D due to
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Kihara [18, 5, 6] is given by

D, = D,[1+A(x,)], (28)
D 3 (kT/2mm,;)'"?
Dy==2, Do=t—roimmry 29
n 8 07,0 "M(TT,)

D, is the concentration-independent first approxima-
tionof D. niy, = mym,/(m, +m,)is the reduced mass of
the two species, k is the Boltzmann constant, and T is
the thermodynamic temperature. Q4%1* is the reduced
collision integral of diffusion, which depends on the
reduced temperature T% = kT/e,,. The expressions
(2.8) and (2.9) follow from the kinetic theory by the
assumption that the intermolecular interaction of two
molecules may be described by a spherosymmetrical
two-parameter potential ¢(r) = ¢f(r/o), o(r — ) = 0.
[f(r/o)is the same universal function for all substances,
ris the distance between the two particles, o is a length
parameter [¢(r = ) = 0], and ¢ an energy parameter
(potential well depth). The indices 12 refer to a
molecular impact of species 1 and 2.

Contrary to other transport cocfficients, D, in
equation (2.9) depends only on the pair-potential
function ¢(1, 2) of the chemically different species 1 and
2. This is the great importance of the first
approximation D,. The pair potentials ¢(1,1) and
¢©(2,2) of chemically identical particles first appear in
the second approximation D,, which according to
Mason [19]differs from theexact diffusion coefficient D
in equation (2.7) by at most 1%, In most cases however
this difference is much smaller. Therefore it seems
reasonable to identify the second approximation D,
according to equation (2.8) with the proper (measured)
diffusion coefficient D. Kihara [18, 5, 6] has given the
following expression for A(x,)[x, = 1 —x,]:

Alx,) = 36CH 57 ZE: 3

a(x,) = Pyx2 4 P,x3+ P ,x,x,,
b(x,) = Q1 x} +Q2x3 +Qy2%,X,,

— QL2 1.1
Ct, = Q7*/Q;1*.

(2.10)

The quantities P and Q with P, 0 > O may be writtenin

terms of the mass fraction M = M,/M, of the molar

masses of the two species in the following manner:

P g OO

' l“%zﬂ(fz'n*’
_, chag

* T o

P (2.10a)

Py; = as+aeAl,,

0, = P,(1+3M?*+3MAY),

3 8
Q, = P2[1+ Xf_z + gA—IAfz],

16/ 2\ p,P
Q12=41’12—3a3+?(—> 12

’
ao a,a,
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g M 1{ a, \*?
adg = § —m———— = —| ——— ,
o= ra? T M\I+M

1—M\?
a, = a M*M?, =15{——]),
=4 @ 1+ M

2.2 1.1
Af, = Q(IZ )*/Q(lz *,

Q2:2* s the reduced collision integral for viscosity and
heat conduction of gases. Expression (2.10) is
symmetrical with respect to the indices 1 and 2.
Thereforconly thecase0 < M < I need bediscussed. It
should be noted that, according to equations (2.8) and
(2.9),nD = nD, = Dy[1+A(x,)]onlydependsonzand
t in the small correction term A(x, [z, t]). Therefore the
particle diffusion current n, W, is, according to
equation (2.7), mainly proportional to the gradient
0x,/0z of the mole fraction. These facts are used for the
first time in this paper to derive cxpression (2.12) for the
gradient dD/dz and the general diffusion equation (2.13)
in the following Section.

2.3. The general diffusion equation
By inserting equation (2.7) into equation (2.6) the
following general diffusion equation can be obtained:
0x, d*x, 8D ox, d1n n dx,
—_— _2 + —_—— + —_—
ot 0z dz 0z 0z 0z

—wE + —I-[K, —x,(K, +K2):|. 2.11)
0z n
Ljunggren [15], Gotoh et al. [16] and Jescheck [1]
have solved this equation assuming K, = K, = 0 and
dD/dz = 0. According to the results,equations(2.8)and
(2.9), of the kinetic theory of gases, however, for the
gradient dD/dz we have obtained the expression

oD dlnn 0A(x,) dx,

—= =D
0z 0z ' ox, oz

Therefore by inserting equation (2.12) into equation
(2.11),the general difflusionequationmay be writtenina
form suitable for perturbation calculus as

(2.12)

5x1 ale
E—D?-—F(Z,t), (2]3)
F(z,t) = Fp(z, )+ F (2,t)+ F(z, 1), (2.14)
BA(x,) [(0x,\*
=D —1,
FD(Zl l) 1 axl ( Jz )
Fuaf)= —wo, @.15)

0z

1
Fx(z,0) = ;[Kx —x3(K; +K,)].

0x,/0t describes the total change of x, with timet ata
fixed position z of the diffusion cell and is therefore the
quantity measured in our experiments. The main
contribution is the term Dd%x,/dz* on the LHS of
equation (2.13), whereas the term F(z,t) on the RHS
may be considered to be a small perturbation term. This
diffusion equation (2.13) will be solved in the next
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section by means of first order perturbation calculus for the following initial and boundary conditions, which arc
appropriate in the case of our diffusion experiments (Fig. 1):

L
xy(2,0) = xy,, ——2—<z<0
L t=0, (2.16)
x,(z,0) = x,,, 0<zg +~2—
(ﬁ) =0
0z Jr=x1p2 t>0. .17

w(+L/2,t)=0

3. SOLUTION OF THE GENERAL DIFFUSION EQUATION (2.13)

3.1. Solution of Fick’s second law
In the case F(z,1) = 0, from equation (2.13), the well-known Fick’s second law can be obtained,
axl ale

a P 3D

This ‘ideal’ unperturbed diffusion equation describes the non-stationary diffusion of quasi-ideal (perfect) gases or
gas mixturesin the case of constant diffusion coefficient D. The general solution x{(z, t) follows from equation (3.1),
with the estimate x,(z,1) = f(2)g(t) on account of conditions (2.16), (2.17), as a Fourier series

x{(z,0) = xT—yFz,1), (32)
w© 2
©) _ exp(—a;Dt) .
F,¢) ”go — sin a,z, (33)

X7 = (X1 +x,0/2, y=2Ax/L =2x,,—x)/L, a,=Qn+ /L.

The solution (3.2) of Fick’s second law, equation (3.1), is the main part of the desired mole fraction x, and was

previously fully discussed in the case of a system of coordinates with the origin at z = — L/2 in Fig. 1 [9, 10].
The following expressions, which will be used in the next sections, result from equation (3.3):
OF® =
= Y exp(—aZDt)cos a,z, (34
62 n=0
OF\? 1 hd 1
==S+ Y cosbz{S*+=8|=2Z, 3.5
dz 2 0O,r n=1 nr nr
® @
b,=2nn/L, S =Y exp(—2aDt), S* =Y exp(—[a?+(a,+b,)*1Dt,
or =0 nr r=0
n-1 (3.6)
S™ =Y exp(—[a?+(a,—b,)*1D).
nr r=0

Equations (3.5) and (3.6) follow from equation (3.4) by multiplying the series term by term and using the relation
2 cos a cos f§ = cos(x— f§)+cos(x+ f).

3.2. Solution of the general diffusion equation (2.13) by perturbation calculus

In the theory for solving partial differential equations, the method for solving equation (2.13) is known as the
cigen- and boundary-condition problem [20]. The perturbation term F(z, t) has to be developed for fixed time ¢ in
terms of the orthogonal eigen-functions sin a,z and cos b,z

Fz,)= Y. [U,)sin a,z+G(t)cos b,z], a,=(2n+ /L, b, = 2nx/L. 3.7

n=0

A corresponding general estimate with the same coefficients a, and b, is attempted for the desired solution x,(z, )

x,(z,1) = § [u,(t)sin a,z+ g,(t)cos b,z]. (3.8)
a=0

The Fourier coefficients u,(f) and g,(t) may be determined if the Fourier cocfficients U {(t) and G,(t) of equation (3.7)
are known. For this purpose equation (3.8) is inscrted in the LHS of the diffusion equation (2.13), which is then



The diffusion equation in the case of non-stationary difflusion of two real gases 217

equated with F(z,t) in equation (3.7). Thereafter the two linearly independent expansions in the sine and cosine

functions are separated. Comparison of coefficients yields the following system of ordinary inhomogeneous

lincar differential equations :
du,(t)

TH + Daju(t) = U, (1),

which have the general solutions :

dg,(1)

2 _
T Dbz g,(1) = G,(1), (3.9)

t
w() = P+, O = Cexp(—a2Dt), uld(e) = exp(—afDl)J U t)exp(alDr)dr, (3.10)
0

. t
g:t) = @O +g.(t), g7(t) = CE exp(=biDr), gi"1) = exp(—bel)j G (t)exp(b7Dr)dr.  (3.11)
0

Thecoefficients C; and CE arc available oninserting equations(3.10)and (3.11)into equation (3.8) and adapting this
expression to the initial and boundary conditions (2.16) and (2.17),

tE=x7, C¢:=0 (n>0), C:= —y/a, (nz=0). (3.12)

Therefore onaccount ofequations(3.2)and(3.3) the solution of equation (2.13) with conditions (2.16),(2.17)is given
by

xl(z’ t) = xlld(z! t)+x(ll‘2)(zv t) +x(ll‘3)(z: ‘)v (313)

Mz = Y gi(Dcos bz = x{P(—z,1), (3.14)
n=0

1Nz, = Y ulO)sin a2 = —xI(—2,1). (3.15)
n=0

The main contribution to the (measured) mole fraction x,(z,t) in equation (3.13) is the mole fraction x{(z, 1),
according to equation (3.2), for ‘ideal’ diffusion. The correction terms x{1-2) and x{!+* are due to the perturbation
term F(z,1) of equation (2.14). They may be determined according to equations (3.14) and (3.15) if the Fourier
coefficients gt and u!" are calculated by means of equations (3.10) and (3.11). To do this the Fourier coeflicients
U, (1) and G,(1) of the estimate (3.7) must first be determined by inserting into the LHS of equation (3.7) physically
reasonable expressions for Fp, F,, and Fy. Then these single perturbation terms may be evaluated explicitly if
x,(z,¢)isreplaced everywhere by the first approximation x'(z, t) according to equation (3.2), which is of course the
main term in the perturbation solution (3.13). In the same approximation dx,/dt may be replaced by the RHS
D3%x,/dz* of Fick’s second law (3.1), a term simply integrated if onc assumes that D is (only for this purpose)
independent of position z,

3.3. Estimates of n, 0AJ0x,, Ky, K, and w
3.3.1. Estimate of n. If one assumes local thermal equilibrium in the gas mixture the following second
approximation for the molar volume v of the mixture is obtained:

1 N RT
p=—=A =T (l4x), x =B (x,, T), (3.16)
c n p RT
B, = By \x{+By;x34+2By,x,x; = 3+ fox, 4 Bixt,

/33=Bzz’ pz=2(312—322)’ ﬁ1=311+322_2312-

(3.17)

nis the desired particle number density, ¢ is the molar density, N, is Avogadro’s constant, and R is the molar gas
constant. T is the thermodynamic temperature, p the pressure and B, the second virial coefficient of the gas
mixture. The virial coefficients B, ;, B,, of the pure components and the mixing virial coefficient B, , dependineach
case on the intermolecular interaction pair-potential ¢(1,1), ¢(2,2) or ¢(1,2) and in other respects only on
temperature T In the case of the relatively strong imperfect gas mixture C(CH,),(1}-Ar(2) at T = 332 K and
p = 1 bar we have for example: B, = —~747.4 cm® mol™}, B, = —9.8 cm® mol™!, B;, = —65.7 cm® mol ™ .

Since x; = x,(z, ) equation (3.16) describes the dependence of v, c and n on position z and time ¢ in the diffusing
gas mixture. Thereby p = p{t) is nearly independent of position z, since pressure changes propagate with the
velocity of sound through the gas mixture. By equation (3.16) one gets immediately

@ i
Inc=1Inp@t)/RT—In(1+x), In(1+x)=x—x*2+x33F--= 3 (—1)"'%, (—l<x< +1). (3.18)
=1
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In the case of an equimolar mixture of C(CH,),—~Arat p = 1 bar, T = 332 K we have x = —0.008. Therefore the
seriesexpansion of In (1 + x) may be truncated after the first term, as has been done before [15]. Moreover x may be
replaced by x, if pin x is replaced by the constant initial pressure p, = p(0), since in the corresponding isochoric
diffusion experiments |(p{t) — po)/pol <0.01. Then instead of equation (3.18) the following approximation of In cis
obtained:

In ¢ =In p(t)/RT —xoz,1),  Xol2,1) = % [B3+ Boxy(z,0)+ fixi(z, 0] (3.19)

With respect to the above given experimental conditions, the difference in In ¢, calculated with equation (3.18) or
(3.19),is only 0.1%. In other cases the correct formula (3.18) with p{f) may be used, or the approximation (3.19) may
be expanded to any extent in powers of xo, whichever is desirable.

3.3.2. Estimate of 8A/0x,. According to the kinetic theory equation (2.10), 0A/0x, may be calculated exactly. The
resulting expression

A [d In a(x,) _ dIn b(x,):'

28 _Ap
e, - M) dx,

is however too complicated for perturbation calculus. Since on the other side A(x,;) may, with respect to the
experimental uncertainty, be well approximated by a polynomial of sccond order, the following estimate seems
reasonable for perturbation calculus:

A(x,) = ¢34 caxy +€4x3, ;TA = ¢, +2¢,X,. 3.20)
"1
Ifonesets ¢y = 0, the diffusion coefficient D(0) may be identified with the first approximation D, of the Chapman-
Enskog theory according to equation (2.9). This is, however, not true in all cascs, but is an approximation often
used [5].

3.3.3. Estimate of K, and K ,. According to equation (2.4), K, and K, are the rates of formation of chemical
species 1and 2in unit time and unit volume of the gas mixture, which has to be considered as a single phase system.
For this system the equations of continuity (2.4) and (2.5) are valid. Strictly speaking K; # 0 therefore means that
chemical reactions are occurring in the mixture [3,5]. On the other side, sorption phenomena should be
considered in a thermodynamically strict sense regarding the mixturc as a system open to additional phases which
act as particle sinks or sources. This concept was firstly used by Gotoh et al. [16], who considered gas sorption at
the ends and in the shearing plane of their Loschmidt diffusion cell by introducing two additional phases and
adequate equations of continuity. However, on account of their lack of information about the equilibrium gas
distribution between the three phases before diffusion, of the source strength and the sorption mechanism, the
corresponding free parameters, for instance distribution coeflicients and desorption constants, are misleadingly
adjusted so that D = D(x, = 0.5)comes out to be independent of concentration in most experiments for the mole
fraction range investigated, 0 < x; < 0.5 (Section 1).

In our diffusion experiments with neopentane C(CH,),, sorption of this gas by the silicon grease in the shearing
plane z = 0 of our diffusion cell was observed too. These observations were confirmed by additional independent
isochoricsorption experiments with pure neopentane and other gases, which have shown no measurable sorption
by the V,A-walls of our diffusion cell at p = 1 bar. On account of the large volume of the diffusion cell (about 700
cm?), thelocal fixed particle source or sink in the shearing plane was so weak that the total particle number density,
n = ny +n,, of equation (2.6) was only slightly changed until the proper diffusion current #, W, in (2.7) had died
away. Thischange of n was experimentally observed by means of continuous pressure measurements, which give us
more information about the gas sorption kinetics than Gotoh et al. [16] had. Therefore, in contrast to their
concept, our intention is to treat gas sorption like chemical reactions, and to determine rates of formation K; of
sorption with the aid of the pressure measurements. Since sorption of the other diffusing gas components like Ar or
CH, was not observed we assume in the following sections |K | > |K,| or K, = 0. On the other hand, sorption is
always small even in the case of ncopentane as mentioned above. Therefore, we assume for simplicity that
K\(z,1)/n(z,t) = k,(t)is only time dependent, which is in accordance with our intention to determine this property
by means of p(t)-measurements. To summarize we make the following assumptions:

Kyn=Kuw/Ny=k(), K,=0. (3.21)

3.3.4. Estimate of w and pressure change during isochoric diffusion. w may be determined by means of the equation
of continuity (2.5) for the gas mixture. Replacing nin this equation by the molar density ¢ = n/N,, and dividing by
¢ # 0 the following inhomogeneous linear differential equation in w is obtained:
dlnc  ow dlnc 1K{+K,

+ += :

Ww—
0z 0z at ¢ N,

(3.22)
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The general solutions of equation (3.22) for the lower (—) and upper (+) half-cell are

 dlnec ] * fdlnc IK,+K2) ( J'" dlnc ) :|
w, =¢xpl| — dz' || C— —— expl| + —dz" |dz2’' |. 3.23
* P ( J; y2 07 ) | J‘:tle ( ot ¢ N, P tr2 02" 3:23)

Itisnecessarythat C = Osincew(+ L/2,t) = Oaccordingtotheboundaryconditions(2.17). Morcoveraccording to
equations (3.19) and (3.17),forallzin 0 < |z] < L/2and t 2 0,

J' d ln,c 4z
t2 02

In the case of the imperfect gas mixture C(CH,),—Ar of Section 3.3.1, the RHS of equation (3.24) has the value
0.027. In the case of the observing positions used, z, = + L/3, the LHS of equation (3.24) is however smaller than
0.002. Therefore the exponential expressions in equation (3.23) are about 1.0 [exp(£0.002) = 140.002]. With
these conditions and equations (3.19) and (3.17), w.. in equation (3.23) may be approximated by

s 1 K;+K
welz,t) = J <8 ny +vL2-) dz’
2\ Ot Ny

: dlnp Po 6x, 1
= - dz'+ —— +2f,x dz' +— t(K,+K,)dz.
J.iLIZ dt RT zuz(ﬁz A 1) Nplinp2 ' :

14
< g Bra—Baal. (3:24)

(3.25)

Since w_(0,t)—w,(0,t) = 0 the pressure change during diffusion in the entire diffusion cell —L/2 <z < +L/2
follows from cquation (3.25) as

dlnp (dlnp dlnp dlnp po 1 (42
= + ’ = (Bz
de dt Jy dt  Jx dt /u RTL])_.,

dInp Ly
( dt ) =N_ZJ. l‘(l\l'*'l\z) dz'.
K A -2

(3.26)

The first contribution (subscript M) describes the pressure change due to the pure mixing volume effect at
constant particle number whereas the second contribution (subscript K) follows from particle number changes
by, for example, gas sorption at the walls of the diffusion cell or chemical reactions in the gas mixture. After
inserting equation (3.26) into equation (3.25) one gets

z ax dIn
Wwi(z,0) = wys (2, )+ wia(z, 1), wyalz,t) = '[ I:%(Bz'*'zﬂlxx)a_l - ( p) ] dz,
+L)2 t M

dt
: K,+K, dlnp
wia(z,0) = '[ [v — ( dz'.
o £1/2 Ny dt Jx

wylz, £) is the mean particle velocity due to the mixing volume effect and w(z, t) the mean particle velocity due to
particle number changes. Inserting the estimates (3.21) for K, K, into equations (3.26) and (3.27) gives

(3.27)

(d In p ) = k(1) wilz,1) = wgs(z,1) = O. (3.28)
dr Jx

This simple and physically reasonable result is of great importance for the evaluation of diffusion experiments.

Equations (3.26) and (3.27) may be explicitly evaluated by using the approximate relations x, = x! according
to cquation (3.2) and 0x,/dt according to equation (3.1) and obeying the conditions (2.17). If D is assumed to be
independent of position z only for the purpose of simple integration, the result is

z z axl 2 ,
J (Bz+zﬁlxx) dz = [(ﬂz'*‘zﬂlxl) ﬂ ( ,> dz],

L2 +172 \ 07

‘ o)’ L\l - + smbz
) (0 P et

The last two expressions result by using equation (3.5). Therefore, in this approximation, according to equations

(3.29)

(3.26) and (3.27),
dl D
( = ”) =~ Rrhr 50,
M J, O (3.30)
R T [ (r«»‘;—z ~1) |- i
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Integration of equations (3.26), (3.28) and (3.30) with respect to time ¢ gives

nZ=mE 4 &, p= PPy

Po - Po Po Po

pt) = po+Ap(t) is the measured pressure during the diffusion experiment. Therefore equation (3.31) may be
written in the following manner:

A A A Apx ' Ape
ln(1+—”)=ln<1+—”i>+ln<1+—@), 1n(1+ﬂ)=j k() de’ ~ 2F%
Po Po Po Po 0 Po

(331

A b A (332)
| ln(l i pM) - —%)’I&yZF(”(t) ~ ﬂ’ Ap = Apg+Apy,
Po Po
! ® | —exp(—2a2Di)
FOn=| S@)dt' =y ———5—"—
© .L O-r( ) ,go 2aD (3.33)

The approximative relations in equations (3.32) are valid only if the corresponding relative pressure changes
Ap/p, are small enough, which was the case in our diffusion experiments.

According to equations (3.32) the contribution Apy to the total measured pressure change Ap may be
calculated if 8, is known. This calculation may iteratively be corrected by inserting p(t) instead of p, in the
factor Dpof3,/RT, a correction only effective for large ¢ values [1]. If Apy and Ap are known, the contribution
Apy = Ap— Apy due to sorption may be determined. Differentiation of Apy/p, with respect to time ¢ then gives
the velocity law k,(¢) for gas sorption according to equation (3.21). On the other hand the coefficient f,, and
therefore the mixing virial coefficient B,,, may be determined in the limit ¢ — o0 if Apgx = 0 and if the viral
coefficients B, ,, B,, of the pure gases are known [FU)t — o) = n2/16D, sce Sections 1 and 4]. In this sense,
self-consistent diffusion measurements are possible.

3.4. Evaluation of the perturbation terms

To evaluate the perturbation terms Fp, F,, and Fy of equation (2.15), the approximations x, = xi* and
8x,/ét = D&*x,/dz* are used in the same manner as in Section 3.3.4. With the above estimates of dA/dx,, w,
K,/nand K,/n, it can be shown that

aA (Bx,)? ox 2B,poD
Fp=D, 6_‘<1(E3_zl) = chZEZ—2D1c1y3E3, F,= ‘—“'Ma—zl = —Cw}’222+ I;’T? }’3(23_—24) = Fo\,
1 (3.34)
Fg = ;[Kl —xy(Ky +K)] = k()[1—x,] = ky()[1 —xT +yF*],
D OFON\? oF©
cp = Dy(c2+2¢4x]), ¢, = I;:_T(ﬁ2+2ﬁ1xr{‘)r ;= ( En ) , L3=F9%, Z,= %2 I (3.35)

¥, is given by equation (3.5). Using 2 sin a cos f = sin(x— f)+sin(«+ f) and equation (3.3), by multiplying
the corresponding series term by term and rearranging one obtains

Zy= Y Si(0sinag, :
neo (3.36)

1 fexp(—aZ2Dt) © 1 __|[exp(—[a,—b,12Dt) exp(—[a,+b,]1>Dt)
Syt = 242 "G o S*+-8 n T Om
3"(0 2{ n 0. * mgl m,r M m.r an_bm * an+bm ’

I, = S4.(t) sin a,z,
= 2,5 (3.37)

S..() =% i I:S+ +%S’:'[exp(—[a,,-—b,,,]le)—exp(—[a,,+b,,,]2Dt)] (bi>
m=1Lmr m.r m

Therefore the coefficients U, (t} and G,(t) of the Fourier series (3.7) are, in this approximation, given by

Golt) = k() [1=xF1+(cp—c) 5 S (0, (339)

G,(1) = (cD-c,_)yz[:;‘* + ls-]. n=1), (3.39)
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exp(—aZDt) ' 2B,poD
UD) = k()= =26, D1y>83,{0)+ "= P[50~ S5, (0), (0> 0) (3.40)

n

Finally these expressions may be used to calculate the dcsired cocfficients u'!(z) and g'!'(t) according to equations
(3.10) and (3.11), respectively, and the desired correction terms x'1:2(z, 1), x{!*¥'(z, 1) of the mole fraction x,(z,1)
according to equations (3.14) and (3.15)

XAz, 1) = g6 () +(cp—c)y* FPAz,1), g6r) = [1—- ]— +(co— C‘.)—F‘”(t) 14
(3.41)

F®(z,0) = Y exp(—b2 D1)S(A, B)cos b,z,

n=1

Apx A
x4z, ) = )’F(o’(z,l)l:% — ¢ Dy Fg)— %il_ya {c1DFOz,1)— Poﬂl ———[F®z,0) = F¥(z, 0]},
o

)
S(E,F S(G,H) | .
F¥z,0) = .Z: exp(—a2Dt) Zl I:a,(' b,,), + ﬁ] sin a,z, (3.42)
F¥(z 1) = i exp(—a2Di) Z —I—[S(E F)— S(G H)]sin a,z.
n=0 m= 1 m

FU)1) is given by equation (3.33). The following abbreviations are used :

SX,Y) = ri’ l—ex;;((—Xt) %'r'z:) l—ex;;(-—Yt)’ (3.43)
A =2Dafa,+b,), B = 2Da,(a,-b,),
E =2D[a/(a,+b,)+b,(b.—a)], F =2D[a(a,—b,}+b,(b,—a,)],
G =2D[a/a,+b,)+b,.(b.+a,)], H = 2D{a/a,—b,)+ b,(b,,+a,)].
In Fig. 2 the reduced functions
9= (%)F(o)(z’ ), SfH= (%)Fm(t), = (%)F(Z)(Z, 1),
(344)

s = (%)F"’(z, 0, 9= (LL)F“’(z, 0, =L/,
4 T

08
£(0)
0.5
f(‘)
0.14 f(L)
'03 M T T M T T T T
01 05 10 20 3.0 L0 50 6.0 7.0

—st/ 7T

F1G. 2. The reduced perturbation functions f*(L/3, t/1) according to equations (3.44) (/" changes sign in the
cases z, = —L/3,n=0,3,4)..
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0.30 1
0.25
0.20
RT)
£@, 140
0.15
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f(O)_ f(l)‘f(3)
0.05]
£0), 0, §3)_ &
0_00\7./' . - — " T — " ;
01 05 10 20 30 4.0 5.0 6.0 7.0
-0.025 — t/7

F1G.3.Combinations of the reduced perturbation functions f(L/3, /1) which are used inequations (4.1} {4.4)
(f™ changes sign in the cases z, == —L/3,n = 0,3,4).

are drawn versus the reduced time t/t = n2Dt/L? in the casc of the measuring positionz = z, = +L/3.Inthecase
z, = — L/3 the parity of the sine and cosine functions has to be noticed according to equations (3.14) and (3.15).
The reduced functions (3.44) need only be calculated and tabulated once for all diffusion measurements at the
same positions z, and —z,, since this calculation is very time-consuming. In Fig. 3, combinations of these
functions are shown which are important in equations (4.1}+4.4).

4. DISCUSSION

The general diffusion equation (2.13) was solved with first order perturbation calculus. The main contribution
to the mole fraction x,(z, t), which is identical with the mole fraction measured in our diffusion experiments, is the
solution xi(z, 1) of Fick’s second law (3.1). The correction terms xi!*?)(z, t) and x{"-3Xz, £), which are explicitly given
by equations (3.41) and (3.42), arc determined with the following assumptions:

(1) The gas mixture is only weakly real.

(2) The diffusion coefficient D is independent on position z only in deriving equations (3.29) and (3.30).

(3) The velocity law k,(t) for gas sorption is only time-dependent, i.e. wy = 0.

(4) x,(z, {) may be replaced everywhere by x¥(z, ) in calculating the perturbation term F(z,1) in first order.

The same assumptions were made by other authors [1, 15, 16]. Nevertheless, the results of this paper differ
considerably from the results of these previous papers. The main reason for this is the fact that the perturbation
terms Fp and Fy according to equations (3.34) are used in this paper for the first time. Moreover the term
D(8 In n/dz)(dx,/dz) of equation (2.11) was cancelled in the exact diffusion equation (2.13) but not in the diffusion
equations used by the other authors [1, 15, 16]. This means that the expressions of ¢,, and Z4 in equation (3.34) for
the perturbation term Fy, are only one-half of the corresponding expressions used in the earlier works. X,
however, is unaltered. In the resulting equations (3.38)+3.42) the expressions of ¢, S3,(t) in the square bracket on
the RHS of equation (3.40), — Apy/po and (pof8y D/RT)F in equation (3.42) are just only one-half of the previous
corresponding expressions.

To understand the following discussion somewhat better it seems reasonable to rewrite equation (3.13) for the
measurcd mole fraction x,(z,4,!) in three terms according to the three effects which cause them,

x,(zZas 1) = X1p+AXx 1+ AX ks 4.1)

. 2
Xiplzar ) = X +Ax,p = xT—(;)Axf‘o’-i-Axm, 4.2)
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3
Axpplzat) = (52> (3>2 (Bx2 L@ 4110 —(ﬂ) <3> (AP LFO 0 45O,
D /\n D Fid _
Axy(oa) = —(%) (%)Z(Ax)z [/ 410 4 ”—}3’;—‘(%)3(Ax)3 [FOFDLfO [ = Axyy (43)
Axinlant) = [1 -1 0% [1 —x,m+(3)Axf(°>] Bpe (@)
Po k4 Po

Equation (4.1) may be considered as a power series in Ax = x;, —X,,. Omitting the term D(é In n/dz)(0x,/dz) in
the diffusion equation (2.13) has the consequence that the expressions of ¢, and [ [ f" 4 £®] in equation (4.3)
for Ax,w(z4,t) are only one-half of the corresponding older expressions [1, 15, 16] as just mentioned. In
remembering this Jescheck was the first to derive the complete expression of Ax,y, corresponding to equation
‘4.3) and use this correction term in evaluating diffusion experiments with pure gases [1]. Gotoh et al. [16] have
investigated the diffusion of pure real gases too, but they omitted the corresponding term in (Ax)? in equation (4.3)
completely. They used, however, the corresponding term in (Ax)?, whereas Ljunggren [15] used the pure time-
dependent term — ¢, 2(Ax)%/V/Dn? in equation (4.3) twice to evaluate his diffusion experiments with diffusing gas
mixtures of Ax = 0.1. Gas sorption was considered only by Gotoh et al. [16] and Jescheck [ 1], but both timesina
more empirical manner and not as consistent as equation (4.4). The concentration dependence of D was not
considered like equation (4.2), which is a result of the perturbation calculus described above.

Since all f*™-functions vanish in the limit t - 0o, except fX(¢) which gives f(e0) = n?/16 = 0.616850, the
following limit of x,(z,, ) results from equation (4.1):

im x,(za 1) = X7 — 22 (Ax)2 4 [1 —x7] (Aﬂ) . (4.5)
[ i 8D Po /w

The kinetic expressions (4.1}-(4.5) show that the concentration dependence of the diffusion coefficient D is
incorporated in the measured mole fraction x,(z,, 1), as in the statement given previously (Section 1).

It is very interesting to compare the kinetic result (4.5) for the thermodynamical equilibrium state of the gas
mixture after diffusion with the limit x,(c0), which is given by pure thermodynamical considerations. According
to the approximation (3.16) for the molar volume v the mole fraction x,(co) after diffusion is, in the case Ap, = 0,
given by

"lu+“lo _ Vu/vlu+Vo/vlo
(nlu -+ nZu)+(nlo + "20) a Vu/vmu + VO/va.

x{c0) = 4.6)

V, and V, are the volumes of the two half-cells and are equal in the diffusion apparatus. v,, = RT/p,, + B,
s the molar volume of gas 1 after adding it to the evacuated volume V, up to a pressure p,,. Thereafter, gas 2
s added up to a pressure p, = p(0), which according to equation (3.17), corresponds to the molar volume
*ae(X10) = RT/po+ B3y + Box 1+ B1x71, of the binary gas mixture with mole fraction x,, = vp./v,, of gas 1
sefore diffusion. If the corresponding meanings are given to vy, U, and x,, one gets with ¥, = ¥, after some
ilgebraic manipulations

1 vh,—0 1 ¢c,/D
\ =M M Mo A m - W A2, 4.7
xy(00) = x| 220 .+, X =X 2 1+A( x) “.7)
4 m m
4 =R“;‘[Bzz+/32-‘1 + B1(2xT2 =X 1% 1)) (4.8)

Equating equations (4.7) and (4.5), in the case Ap; = 0, gives

¢ _ _(ew)(1l=4
D (D)<1+A)' 49

This equation (4.9) connects the kinetic variable cp/D with the thermostatic variables ¢,/D and 4 and may be
liscussed in the case x,, = 1, x,, = 0, which are our experimental conditions. Using the virial coefficients of
Section 3.3.1, for the system C(CH;),-Ar at p = 1 bar, T = 332 K, gives

¢o/D = (Byy—By3)po/RT = —0.0267, A =(B,,+B;,)po/2RT = —0.0137,

c./D Cp cy+cy c.[1—A
¢ (00) = L1 =050677, 2=_2T°L e -TT)_ 00275
() =2 ‘(1+A> 0.5 D T 1+ARD) D(H—A 0.0275

(4.10)

This value of ¢,,/D seems reasonable since ¢, + ¢, = D(1)— D(0) is the difference of the diffusion coefficients in the
imiting cases x, = 1 and x,; = 0,and is therefore of the order of 3%, On the other hand, we have ¢./D = ¢p/D =0
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only if p, = 0 (vacuum conditions), T — co [perfect gas mixture with B (T — o0) = B,o(T — 0) = 0] or
B, (T) = B,,(T), which means self-diffusion (interdiffusing gases with identical particles and therefore
identical interaction pair-potentials). These conditions seem very reasonable too, although the dependence
of cp/D on po/RT like equations (4.9) and (4.10) is not inherent in the Chapman-Enskog kinetic theory of gases
as was shown in Section 2.2. This is, however, not surprising since equations (4.9) and (4.10) arc obtained by
connecting the result,equation (4.5), of kinetic perturbation calculus with the result, equation (4.7), of the conserva-
tion of mass in a diffusion experiment.

Some additional points should be mentioned at this stage. Firstly the mixing virial coefficient B,, does not
appear in equation (4.10), which is of great importance for the evaluation of diffusion experiments with gas
mixtures of unknown B, ,. Secondly, the case cp/D = O mayalso occur if A = 1inequations(4.9)and (4.10), which
in the case po = 1 bar means RT, = (B, + B,,)/2and ¢,/D = 2(B;, — B,,)/(B,1 + B,,). By comparing this result
with the second Kihara approximation (2.10) this definite temperature T, may correspond to C¥,(T5f) = 5/6, in
which case T = kTy/e,, is of the order of 1.0 for many interaction pair-potentials [3]. ’

To demonstrate the magnitudes of the correction terms in equations (4.1}-(4.4), we finally give numerical
values for the same conditions as in equations (4.10),

Xi(za, 1) = X1p+Ax 1y +Ax x, X p(Za, ) = 0.50000—0.636621 + Ax,p,
Axyplza, ) = 001113 [P 44 D] 1000774 [ fOf D £ 3],
Ax; (24, 1) = 0.01083 [f P+ 1/ V]—0.00585 [ @M fO) 60,

Apx _ (Apx 7
(p())m a5 = 0.009.

4.11)

Ax k(za,t) = [0.50000+0.63662 ] -Aﬁ,
Po Po

Some remarks concerning gas sorption will conclude this discussion.

(1) The last expression in equation (4.11) for Ax,k(z4, ), and therefore equation (4.4), obviously hold only for

the lower half-cell z, < 0, because /@ is not symmetrical with respect to the sorption source (sink) in the plane

z = 0. Since this asymmetry with regard to adsorption (Apx/po < 0) and desorption (Ap,\/po > 0) seems to be

physically unreasonable, we assume that xi = 1 —x¥ in equation(4.4) has to be replaced by x for the upper half-
cellzy, >0

Apx

Apx
Axx(za < 0,0) = 2K 38z, < 0,1), Axyxlza = 2P
Po

x(zp > 0,1). (4.12)

(2) The simple results Ax,, = Ax,, in equation (4.3) as well as Ax, in equations (4.4) and (4.12) are mainly
determined by the simplified estimates (3.21) of Kv/N, and K, for gas sorption. However using the
approximation (3.16) of t(z, ) the following more general estimates may be used:

Ky Ky
Ni  Na

[7 + By{xj ] =ky(z1), Ky =0, By(x{)=fs+px+p,x"2 (4.13)
K, = K, () seems to be reasonable, because the sorption source or sink is only weak and limited to z = 0,asit was

in Section 3.3.2 too. Using equation (4.13) for perturbation calculus has some important consequences.
According to equation (3.26) the first equation in equations (3.28) is now given by

dinp B N0} _ ﬁy2 .
( dt >K—<NA )[‘,T“M D+ —— .o]—l\l(t), (4.14)

and the second equation by
A
b"") sin bnz:I. “.15)

The last equation fulfills the boundary conditions (2.17) and goes to zero in the limit ¢ — 0. The following
abbreviations are used:

wil(z, 1) = wgo(z,t) = ( it ))[)([32+2ﬁ1x'1“) Z Lcos a,z+f,y? i (

n=0 n=1

) = exp(—a2Dy), f.t) = h(t)/a,, a,=Q2x+1)a/L,

o -] n—1 (4 16)
Ar.O(I) = Z j;Z’ Ar.n?l(t) = Z frj;-ﬂl_% Z f;f;:—l-r‘ ’
r=0 r=0 r=0
On account of equations (4.12)-(4.15) the perturbation terms Fy and F,, = F,,, in equation (3.34), the last due
only to the mixing volumec effect, have to be modified in the following manner:
) id
Fw = FWM+FWK7 FvaK = _“'K%a (417)
z
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{FK_ = ky(z < 0,0)x¥(z < 0,1),
Fx =

Fes = ki(z > 0,0x(z > 0,1). (4.18)

Using the expression (3.2) for xi and some trigonometric and algebraic manipulations, Fy may be written as a
Fourier series according to equation (3.7) as follows:

Kt &
Fy = ( 1\;( )>|:C0+CIF‘°)+C2F‘°’2+C3F‘°’3] = Y [Ux(sin a,z+ G,k(t) cos b,z],

A n=0

1 Kl
6o = ()| e+ 2 40| G0 =(F)cats0r >, @19
A A

e .
U0 = (585 + L a0 2§ dalhiest o 030
A k=1 .

According to equation (4.18) the coefficients Cy, C,, C;, C; inequation (4.19) are given either by the minus (—) or
plus (+)-set of coefficients (4.20)

RT RT
e ] =t Cou = | 2L 4.1 o
RT RT
C-= )‘{[T + Bm(x'x“)]— [B2+2B,xT][1 —XT]}, Cis = —)’{I:T + Bm(x'i’)] +[B:+ Zﬂxx?']x'n“},
Cy— = y*{B1—B2—3B:1xT}, Cyy = y*{B,+31xT},
Cy- =y°py, Cs+ = —y°py 4.20)

In the same manner the perturbation term F_x may be written as

FwK = z {UnwK(t) Sin (l"Z'f' anK(t) Cos bnz})

n=0
Gous) = (50 et Guustd = (S0) e § (Ens L2 ) 'S 20| e
A A r=0 T r+ r=00r

Upail8) = (K‘(‘)) (C3 ) S A =l Ca= y(Ba+ 2802
Ny 2 )= b

In order to calculate by equations (3.10) and (3.11) the corresponding desired coefficients u{!X(t) and g¢!(¢) for the

mole fraction changes Ax, ¢ due to Fg and Ax,x due to F . the Fourier coefficients of equations (4.19) and (4.21)

have to be integrated with respect to time t. For this purpose K,(z) must be known, which seems to be the main

problem. However the following approximation is evident. On account of equation (4.14) we have

Ky(0)
Ny

d
= K (d—f) , KO = {RT +pBo(x)+B1y*A,o/20) (422)
K

K(t) may be calculated exactly for each gas mixture and time ¢ according to its definition. However since
(Ax)?/4 = y2A, /2 2 0 for 0 <t < o0, we may, by the same arguments as in Section 3.3.1, in realistic cases
assume K(f) to be nearly a constant mean value K, which leads to the further approximation:

20 A(j—") . Ko= {RT+polBalxf)+ B1(Ax?/81} . @23)
A t K
For example in the case of the diffusion of pure C(CH,), in pure Ar one gets for the conditions given in Section
331 (T =332 K, po=1 atm, xT = 0.5, (Ax)? = 1: K(0) = 3.772x 1073, K(0) = 3.701 x 1073, K, = 3.712
x 1073 (units: mol cm ™3 atm ™).

The pressure change from p, = 1 atm to e.g. p, = 0.99 atm in equation (4.23) corresponds in this case to a
change of 3 x 1072 mol cm ™3 atm ™! in K, and is therefore negligible.

Using the simple equation (4.23) for integration with respect to time ¢ has the following great advantage. If f(¢)
is some arbitrary function of time ¢ one obtains by partial integration and the use of the mean-value theorem of
integral calculus with equation (4.23)

t

1 -
N | K@) de = Ko{[px(®)—px(®1/ (1) +[p(D)— p(0)1 £ (0)}. (4.24)

Px(t) is a mean value of pg(r) in the time interval 0 < ¢ <t If for simplicity the arithmetic mean pg
= [px(t)+px(0)1/2 is chosen as an approximation one gets the very simple relation (4.25), which is used

HAMT 25-2 €
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in all further calculations,

Api(1)

0

NL_[ K@) f () dr = ( °p°>[f(t)+f(0)] (4.25)
A Jo

Apy(1) = pk(t)— px(0).
Apy 1s the pressure change due to gas sorption effects, which may be determined experimentally as described in

Section 3.3.4. Now it is possible to calculate the mole fraction changes Ax,x and Ax, . The following results and
the abbreviation B are used:

i 1 2 - Apy K
A o0)= /8, A,,>0)=0, '_Z [ + - ]_ <n )[4 Z ot 1)2] B= —{; ';('—) (°Tp°> (4.26)
Equation (4.19) gives

Axx = Z [4R(0) sin a,z +g'R(t) cos b,z], gbR(t) = B[2C,+ Co(A, o+ I2/8)/2],
n=0

. @27
gi(0) = BCy4,,, = 1), ulR(0) = B{[2C,+Cx(4,0+12/8)/2)f,+(C3/2) Z A alSxrntfu-id)s

with the cocfficients C; given by equations (4.20). Equation (4.21) gives

Ax)yx = Z [k (0 sin a,z+ gl cos b,z],  gilk(t) = BCy(A, 0+ /8),
n=0

i I 1 ihh_,_, I?
gs:t)k(l) = BC4{ z hrhr-fn[ 2 + —_]+ Z Lzl" +—CXP('—b;‘:Dl)}, (4'28)
r=0 a, ar+n r=0 a, 4
C A,
uli() = 2 z = [hk 1=n—hisnl

k=1

By analogy with equations (4.3) and (4.4), the correction terms (4.27) and (4.28) may be written as

Ax g =<%)(K‘;”°>{2CO+2C< )f(°)+(cz>< > [f,ox+2fg,.k]+<c )(%)J A ENAL) }

(4.29)

with the coefficients C; given by the exprcssions (4.20), and

Axyax = (é”—") ('i”‘l> {cd(ﬁftfgox o (—C—’) (5)3fm}. (4.30)
Do 2 n 2 pid

The characteristic functions of these relations are given by

n\? I \* &
Joox = (1—> (A,o+ ) Sk = (E) "; A, cos b,z,

n 3 LZ n 3 ® o
unk _f Okfw) = (—Ij) ( r0+ ) Z f;. Sln a,z, u(rf})\ = (z> z { Z Ar.k(ﬁ( +n +j;r~l)} Sin a,z,

n=0 \k=1
(4.31)

I, : S i =+ S 1""" = (E b2D1)$ cos b
nw 14 - 2 5 P\ —D, 0. s
sk = L 1 r=0 ¥ al = al,, o a; 4 exp( eos

( )3 a {m Ark } .
j:mV\K Z [hk 1~n hk+n] sin a,z.

nOklbk

S is given by equation (3.44). In Fig. 4, the functions (4.31) are shown only for the measuring position
za = —L/3 as functions of the reduced time /7. In the case z = + L/3 the parity of the sine and cosine functions
have to be taken into account.

In this sorption model equation (4.4) has to be replaced by equation (4.29), and equation (4.30) must be added
to equation (4.3). Finally numerical values are given for the same conditions as in equations (4.10) and (4.11)
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F1G. 4. The characteristic functions (4.31) as functions of the reduced time t/t for z, = —L/3.
_ (A -3 -3
Axqax(za,t) = p— {27741 %10 [feok+ fonwx]— 14984 x 1073 f,, i},
0

A
Axyxlza < 0,1) = (—pp—‘) {0.50150+0.647257© + 1.5973 x 1073 f,o + 2] — 1.4984 x 1073[ [ + £ 2]},
1}

/A
Axx(zp > 0,1) = (%) {0.50150—0.62982© —3.9510 x 10~3[ fyox + 2] + 1.4984 x 107 3[ £ +£27}.

o
(4.32)
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SOLUTION DE PERTURBATION DE L’EQUATION DE DIFFUSION DANS LE CAS DE LA
DIFFUSION MUTUELLE NON STATIONNAIRE DE DEUX GAZ REELS ISOCHORES ET
ISOTHERMES

Résumé— L’¢quation de diffusion non stationnaire pour deux gaz réels isochores et isothermes est résolue par
la méthode de perturbation. En vue d’expériences avec 'appareil de Loschmidt, les gradients de pression et de
température sont supposés négligeables. Sont considérés comme des petites perturbations physiques: la
dépendance du coefficient de diffusion D vis-a-vis de la concentration sclon la théorie cinétique des gaz, le
changement de pression pendant le mélange de gaz, la sorption des gaz par les cellules de 'appareil et les
vitesses des écoulements correspondants. Les résultats montrent que lacompléte dépendance de D vis-a-vis de
la concentration peut étre déterminée par une seule ou deux expériences de diffusion non stationnaire avec
deux gaz purs, ce qui est le grand avantage de cette méthode sur toutes les autres.

LOSUNG DER DIFFUSIONSGLEICHUNG FUR DEN FALL DER GEGENSEITIGEN
NICHTSTATIONARENISOCHOREN UNDISOTHERMEN DIFFUSION ZWEIER REALER GASE
DURCH STORUNGSRECHNUNG

Zusammenfassung—Die Diffusionsgleichung fiir die gegenseitige nichtstationdre isochor-isotherme
Konzentrationsdiffusion zweier realer Gase wird durch Stdrungsrechnung geldst. Im Hinblick auf
entsprechende Experimente in einer Loschmidt-Diflusionsapparatur werden Gradienten im Druck und in
der Temperatur als vernachldssigbar klein angenommen. Die Konzentrationsabhidngigkeit des
Diffusionskoeffizienten D entsprechend der kinetischen Gastheorie, die Druckinderung wahrend der
Gasdurchmischung, Gassorption durch die Dichtungen der Diffusionsapparatur und die entsprechenden
erzeugten Stromungsgeschwindigkeiten werden als kleine Stérungen in einer physikalisch sinnvollen Weise
beriicksichtigt. Die Ergebnisse zeigen, daB die vollstindige Konzentrationsabhingigkeit von D durch nurein
bis zwei nichtstationire Diffusionsexperimente mit reinen Gasen bestimmt werden kann. Dies ist der groQe
Vorteit der beschriebenen Methode gegeniiber allen frither benutzten Methoden.



The diffusion equation in the case of non-stationary diffusion of two real gases

PELIEHHE METOAOM BO3M¥H[EHMF1 YPABHEHUA NHOOYIHN ANIA
B3AUMHOM HECTALMOHAPHOH H30XOPHUYECKOH H M30TEPMUYECKOH
AHOOY3IUH IBYX PEAJIBHBLIX T'A30B

AnHotauna — MeTtoaoM so3Myuennii peweno ypasuenite anddy3un a1 B3anmuoil HecraunoHapHoii
H30XOPHYECKOil 1 H3oTepMideckoii KoHueHTpaunonnoii anddysun asyx peanshuix razos. C yueToM
yc:10BHiil, NpH KOTOPHIX MPOBOAATCS KOHKPETHBbIE JKcmepHMeHTH Ha auddysnonnom annaparte
JlowsMiaTa, CAEN2HO NPEANONOKEHHE, YTO TPAAHECHTBI AABICHHS H TEMNEPATYPLI NPEHEOPEAHMO MBI,
Kounuentpamnonnas 3asucumocts koddduunenta anddyinn D B COOTBETCTBHH C KHHETHYECKOil
TeopHeil ra3oB, HIMCHEHNE JABJCHHA MPH CMCIIHBAHUM ra3os, copbuns raza yninotHenusMu audoy-
3HOHHOTO annapaTta H CKOPOCTH MOTOKA ra3a YYHTBIBaNHCh Ha OCHOBe (H3HMYECKHX cooOpaxennii
KaK Malble BO3MyLICHHSA, Pe3yabTaThl MOKa3blBAIOT, MTO MOJIHYIO KOHUEHTPALUHOHHYHO 3aBHCHMOCTb
k0d¢diunenTa D MOKHO ONpeneanTh TOALKO H3 OHOFO MM ABYX JKCIICPHMEHTOB 1O HECTAUMOHAPHOI
anbhy3un UHCTHIX Ta30B, ¥TO ABAACTCH BAXHBIM MPEHMYLUECTBOM HCIIONB30BAHHOIO METOMA.
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