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Abstract--The diffusion equation for the mutual non-stationary isochoric and isothermal concentration 
diffusion of two real gases is solved by perturbation calculus, in view of corresponding experiments with a 
Loschmidt diffusion apparatus, pressure and temperature gradients are assumed to be negligible. The 
concentration dependence of the diffusion coefficient D according to gas kinetic theory, the pressure change 
during gas mixing, gas sorption by the seals of the diffusion apparatus and the corresponding stream velocities 
produced are taken into account as small perturbations in a physically reasonable manner. The results show 
that the complete concentration dependence of D may be determined by only one or two non-stationary 
diffusion experiments with pure gases, which is the great advantage of this method over all previously used 

methods. 

N O M E N C L A T U R E  

a(xl), function in A(xt) of kinetic gas theory; 
ao, at,a2,a ~, mass ratio expressions in A(x~) of 

kinetic gas theory ; 
a~, (2x+ l)n/L, x -- n,r  = 0, I , . . . ;  
A, series coefficients in Section 3.4; 
A, abbreviation in Section 4; 
A~'2, ratio of collision integrals; 
A .... series expressions; 
b(xt), function in A(xt) of kinetic gas theory; 
b,, 2xrr/L, x = n, m = 1, 2 . . . .  ; 
B, series coefficients in Section 3.4 ; 
B, ApK(t)Ko/2 in Section 4; 
BI t, B22, Bt2, second virial coefficients ; 
Bin, second virial coefficient of mixture, 

/h+fl2~, +fl,~]; 
c, molar density; 
c~,c2,c~, fitting coefficients of estimated A(x0;  

co, D1(c2 + 2cix'~) ; 
c., (PoD/RW)(fl, + 2fllxT); 
C, C~, constants, i = 0, 1,2, 3, 4; 
C~2, ratio of collision integrals; 
C~, C~, coefficients of perturbation calculus; 
D, binary mutual diffusion coefficient, 

Dt 2 = Dzt ; 
Do, riD1 ; 
Dr,D2, first and second kinetic gas theory 

approximation of D; 
E, series coefficients; 
rio, perturbation functions, i = 0, 1, 2, 3, 4 ; 
f~, exp(--a~Dt)/a~; 
F. series coefficients; 
F(z, t), perturbation term of the diffusion equa- 

tion FD + F ,  + FK ; 
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FD, F,,.,F ~, perturbation terms of the diffusion 
equation ; 

F I~ perturbation functions, i = 0, 1, 2, 3, 4; 
G, series coefficients; 
g,,,g~O),g~l), (even) Fourier coefficients ofxj (z , t ) ;  
G~, (even) Fourier coefficients of F(z, t); 
h~, exp ( -a~Dt ) ;  
II, series coefficients; 
I, series expression ; 
k, Boltzmann constant ; 
kl, Kl /n  = KIr /N^;  
kT, (d In p/dt)r.; 
K(t), (K t/Na)(dp/dt)~: ; 
Ko ' {RT+po[B,(x,~j+flt(Ax)2/8]} - t ;  
KI,K2,  rates of formation of species 1, 2 in unit 

time and unit volume; 
L, length of diffusion cell; 
ml2, reduced mass; 
M, ratio of molar masses, M i/~,/2 ; 
n, n t ,n  2, particle number  densities; 
N^, Avogadro constant ; 
p, pressure ; 
Po, initial pressure; 
PI,P2, PI2, expressions in A(x 0 of kinetic gas 

theory ; 
Qt, Q2,Qt2, expressions in A(xt) of kinetic gas 

theory; 
r, position vector ; 
r, tv,'o-par ticle distance; 
R, molar gas constant ; 
S, symbol for series expressions 

S ,S+,S- ,S3~ ,S~) ;  
O.r  n . r  n . r  

t, t ime; 
7", temperature ; 
"/lz, reduced temperature, kT/et2; 
u,,u~~ l), (odd) Fourier coefficients ofxl (z , t ) ;  
U,, (odd) Fourier coefficients of F(z, t); 
I),1)1,1)2, molar volume; 
th, 02, z-component of stream velocity (only in 

Section 2.2); 
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Vu, I~, volumes of the two diffusion half-cells ; 
w, z-component of average particle velocity; 
tV~,II~, z-components of particle diffusion 

velocities ; 
x, coordinate (in direction of optical axis, 

only used in Section 2.1); 
x, B,,,p/R T; 
Xo, B,,,Po/R T; 
x,, mole fraction of heavier gas component; 
x2, mole fraction of lighter gas component, 

1 - x t ;  
x~ d, solution of ideal-gas diffusion equation ; 
xtu, Xlo, initial mole fractions; 
x~', mean mole fraction, (xtuq-xlo)/2; 
x~.2~, x~.3~, perturbation contributions to x~ ; 
y, coordinate (shearing direction of diffusion 

cell, only used in Section 2.1); 
Y, 2(xt.--Xxo)/L; 
z, coordinate (direction of diffusion); 
ZA, coordinate of the point of observation of 

diffusion. 

Greek symbols 
fit, BI1+ B22--2B12; 
/ / 2 ,  2(BI2--B22); 
fla, B22 ; 
AX, X I u - - X l o  ; 
A,A(xl), kinetic gas theory correction for the 

concentration dependence of D; 
Axl, perturbation contributions to xl 

(measured); 
Ap, P -  Po ; 
e,e,2, potential well depth; 
a, potential well distance parameter; 
Y2,Y.3,Y.~, series expressions; 
z, reference time, 12/n2D ; 
q~, intermolecular pair potential ; 

0 , reduced collision integrals of kinetic gas 
theory. 

Subscripts 
D, denotes diffusion terms ; 
g, denotes even-parity functions or 

constants; 
K, denotes sorption terms; 
m, denotes quantities of the gas mixture or 

molar quantities ; 
m, denotes corresponding summation index; 
M, denotes mixing-volume terms; 
n, denotes corresponding summation index; 
o, denotes quantities of upper diffusion half- 

cell ; 
r, denotes corresponding summation index ; 
u, denotes quantities of lower diffusion half- 

cell ; 
w, denotes average-particle-velocity terms; 
1, denotes quantities of heavier gas 

component; 
2, denotes quantities of lighter gas 

component. 

I. INTRODUCTION 

Tills paper supplements and improves the doctoral 
thesis of Jescheck [ 1]. The knowledge of accurate and 
reliable gas diffusion coefficients D is very important for 
the solution of many problems in technical and natural 
sciences. The Chapman-Enskog theory, for instance, 
shows [2-5] �9 contrary to other transport 
coefficients of binary gaseous mixtures, reliable 
information about the mutual intermolecular interac- 
tion pair-potential r#(l, 2) of chemically different atoms 
or molecules, I and 2, may successfully be extracted out 
of accurately measured binary gas diffusion coefficients 
D. For this purpose, the dependence of D on both the 
temperature and the concentration of the mixture must 
be investigated with great care. Diffusion experiments 
of this kind, which give D with permissible uncertainty 
of at most 1%, are scarce in the literature [6--9]. In 
addition, gas diffusion experiments are not simple to do, 
which is one reason why only a few laboratories have 
dealt with such investigations. Most workers in this 
field tend to neglect the concentration dependence olD 
as 'unimportant', although this effect is predicted by the 
Chapman-Enskog theory to be up to 13% in the 
limiting case of hard-sphere molecules. 

The uncertainty of different methods for measuring 
gas diffusion coefficients has been investigated [7-9]. 
Among other things, our examinations [8,9] have 
shown that the measured temperature dependence of D 
seems to be different according to whether the diffusion 
measurements are non-stationary, quasi-stationary or 
stationary. As another result we find that the absolute 
measurement of D in observing the non-stationary 
diffusion Of two gases or gas mixtures in a Loschmidt 
shearingcell at a fixed point of observation z A should be 
the most reliable measuring procedure. Thereby the 
density p(t), and therefore the composition of the binary 
gas mixture, should be analysed continuously in time t 
at z^ with the aid of an optical interferometer to avoid 
disturbances of the diffusion experiment. Such a 
method has been developed and described [10, 11]. 

To investigate the concentration dependence olD at 
fixed temperature T with this method, the mutual 
diffusion of quasi-ideal gas mixtures of nearly the same 
composition was hitherto studied with few exceptions. 
The result of such experiments is only an arithmetic 
mean of D, which may be associated with the mean 
concentration of the mixture after diffusion. This 
procedure of measuring the concentration dependence 
of D was first applied by Lonius [12] in the case ofgas 
diffusion and is the only method in literature till now. 
The advantage of this method is the fact that the ideal 
unperturbed non-stationary diffusion may be de- 
scribed by a simple diffusion equation, the well-known 
Fick's second law, which possesses known solutions for 
many initial and boundary conditions [13,14]. 
Disadvantages of the Lonius method are the 
uncertainties caused by averaging D, the use of gas 
mixtures with possible errors in their production and 
composition (which gives an additional factor of 2 or 
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more in the uncertainty of D I-8, 9]), and the great 
number of very time-consuming independent diffusion 
experiments which must be carried out to get a 
reasonable dependence of D in the whole range of the 
mole fraction, 0 ~< x t ~< 1, of the chemical species 1 (at 
least 10 experiments). 

This procedure is, however, inefficient in comparison 
with our method. We have already mentioned 1"9] that 
the whole information of the concentration dependence 
of D should be embedded directly in the measuring 
signal (interferogram), since the composition of the gas 
mixture is measured at each time t at the fixed point of 
observation z,.  This great advantage is not inherent in 
any other known method for measuring gas diffusion 
coefficients and was obviously not recognized b'y other 
authors [15, 16] who have used the same experimental 
method. 

Understanding this advantage suggests the investiga- 
tion of the diffusion of two pure gases by observing the 
decrease of the mole fraction x t in one-half of the 
Loschmidt cell and simultaneously (or in another 
independent experinaent with the same physical 
conditions) the increase o fx  t in the other half-cell. In 
this way the concentration dependence of D could be 
measured in the entire mole fraction range 0 ~< x I ~< 1 
of component 1 in only one or two diffusion 
experiments, a procedure which would considerably 
minimize the uncertainty of the measured D and the 
quantity of measurements necessary. 

The only disadvantage of this method is the fact that 
the diffusion equation is more complicated than Fick's 
simple law, since the results on mixing two imperfect 
gases under the conditions ofconstant temperature and 
cell volume must be known at every time t. Therefore, 
simultaneously with the change of concentration at the 
point of observation zA, the accompanying pressure 
change in the diffusion cell was measured. As well as this 
mixing volume effect, an additional pressure effect may 
occur due to gas sorption at the walls of the diffusion 
cell. This sorption pressure effect may be separated 
from the entirely measured pressure change Ap(t) if the 
thermodynamics of mixing of the two gases is known. 
On the other hand, the thermodynamics of mixing may 
be determined by diffusion experiments if the sorption 
effect vanishes. Experiments of this kind should 
therefore give self-consistent information on the 
kinetics and thermodynamics of mixing two gases with 
previously unknown mixing conditions. This is another 
great advantage of our method. 

Ljunggren [15] was the first to introduce the pure 
mixing volume effect in the solution of the non- 
stationarydiffusion equation in the case of two diffusing 
gas mixtures of nearly the same composition. Gavalas 
et al. 1,17] have used the corresponding pressure effect 
to determine binary diffusion coefficients D at elevated 
gas densities. Beside this mixing volume effect Gotoh et 
al. [16] have considered gas sorption by the seals at the 
ends and in the shearing plane of the Loschmidt 
diffusion cell, but their information about sorption was 
poor, since they only measured the static pressures at 

the beginning and at the end of an experiment. They 
have also considered the concentration dependence of 
D, but, as a result of a very complicated perturbation 
calculus with four free adjustable parameters, they 
obtained only one diffusion coefficient D, which was 
constant in the entire mole fraction range investigated, 
0 ~< xl ~< 0.5, and was associated with the mean mole 
fraction x~ = 0.5 in tile diffusion cell with diffusing pure 
gases. In some cases, however, they noticed that 
calculated diffusion coefficients D of this kind are of 
little use in view of their estimated experimental 
uncertainties. In these cases they have repeated their 
measurements with two gas mixtures of adequate 
composition and obtained more reliable constant 
values of D (Section 3.3.3). 

This paper will deal with the solution ofthe complete 
diffusion equation including the effects of the mixing 
volume, the concentration dependence of D, and 
sorption. These effects will be considered as small 
perturbations, which are superposed on the proper 
concentration diffusion effect. The perturbation 
calculus used is of higher order than the calculus of 
Gotoh et al. 1-16]. Throughout the paper numerical 
values are given for the gas pair C(CH 3)~-Ar, one of the 
most imperfect binary systems investigated by us. 
Based on this work, further publications will deal with 
experimental results of corresponding diffusion 
experiments. In all cases the diffusion thermoeffect is 
completely negligible. 

2. TI lE DIFFUSION EQUATION 

2.1. Experimental conditions 
Figure I shows schematically the diffusion shearing 

cell used. In Fig. l(a) the apparatus is in the filling 
position, the two identical half-cells of length 1,/2 and 
rectangular cross-section are separated (gas-tight) from 
each other. In this position the two gases or gas 
mixtures are put into the evacuated half-cells up to the 
same initial pressure P0 at the same temperature T. x 

. l u  
and Xto are the initial mole fractions of the heavier 

t=O 

N 
Xio 

~§ t>O 

XI{ZA,t 

#O'L~(I 
>Y - - r  shear ing 
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L 

la f i l l ing posit ion Ib diffusion posit ion 

FIG. I. Schematic representation of the Loschmidt diffusion 
cell used. 
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component 1 in the lower (x,~) and the upper (X~o) 
half-cell. Since x l+x2 = 1 and D12 = D2~ = D only 
the diffusion of this heavier component 1 need 
be considered. The gravitation of earth acts in the 
(-z)-direction. To avoid density convection of the 
gases, the condition x ~  > X~o should be fulfilled. 

The gas-tightening ofthe two half-cells to each other 
and to the surroundings is achieved by using a thin film 
of silicon grease and two Viton O-rings, which are 
incorporated into the shearing plane of the half-cell 
with the two opposite optical windows at ]z^] = L/3. 
These construction features are important to the 
understanding of gas sorption phenomena (Section 
3.3.3). 

At time t = 0 the open sites of the two half-cells are 
connected by shearing the half-cell without windows 
pneumatically in the (-y)-direct ion over the half-cell 
with the windows. The corresponding diffusion 
arrangement ofthe apparatus is shown in Fig. I(b). The 
change of the mole fraction x,(zA, t) is continuously 
measured for times t > Oat the point of observation z^ 
by means of a Michelson interferometer. The optical 
axis is directed in the x-direction perpendicular to the 
plane drawn, and the geometrical effective length of the 
light rays is I(twice the window distance of the diffusion 
cell in the case of a Michelson interferometer). 

Immediately after connecting the two half-cells, the 
pressure p changes from the initial pressure Po to p = 
po+Ap(t) due to the mixing volume and gas sorp- 
tion effects, since the entire volume of the diffusion 
cell remains constant during an experiment, lfthe diffu- 
sion oftwo pure gases (x~ = I, X,o = 0) is investigated 
with a diffusion cell as in Fig. I, only the dependence 
D(xl) for the mole fraction range xtu = I >~ 
x l ( -L /3 , t )  >~xl(--L/3, co) ~. 0.5 can be observed. By 
inverting the entire diffusion cell, however, one 
gets from a second diffusion experiment with the same 
physical conditions a value of D(xl) for the mole 
fraction range Xlo = 0 ~< x,(+L/3,t)  <~ x,(+L/3,  oo) 

0.5. In this experiment the point of observation 
z A = + L/3 is now in the upper half-cell, the arrange- 
ment used by Gotoh et al. [16]. 

2.2. Some results of the kinetic theory of ffases 
In deriving the complete diffusion equation in the 

next section, the validity of the Chapman-Enskog 
kinetic theory of gases is assumed. Moreover, the 
diffusion coefficient D will be determined only by pure 
concentration diffusion. Gradients in temperature and 
pressure in the gas mixture and external forces (e.g. 
gravitational forces) as driving forces for particle 
currents are assumed to be negligible. These conditions 
are fulfilled in o ur experiments within the uncertainty of 
the measurements [1, 10, 11]. 

Since in the diffusion experiments described, 
phenomena of friction or acceleration are negligible, 
the diffusion is reasonably examined by means of the 
frame of reference of the average particle velocity ~(r, t) 
[2-5]. In the case of Fig. 1, only the z-components of the 
velocities must be taken into account, which therefore 

are not marked explicitly in the following considera- 
tions, in the case of two diffusing species we have 

w(z, t )=(1)(n,vt+n2v2)=x,vx+x2o2.  (2.1) 

n(z, t) = n,(z, t) + n2(z, t) is the particle number density 
of the mixture, v,(z,t) is tile z-component of the 
molecular (mass average) or stream velocity, x,(z,t) 
= n//n the mole fraction and n,(z, t) the particle number 
density of the species i = 1,2, The particle diffusion 
velocity W~(z, t) is therefore given by 

lV,~z, t) ~- v,(z, t ) -  w(z, t). (2.2) 

According to equations (2.1) and (2.2), 

n, ti~ +nztV 2 = 0. (2.3) 

The sum ofthe particle diffusion currents, n i|V~, through 
a frame perpendicular to the stream direction z 
therefore vanishes if this frame of reference is moving 
with a velocity w(z, t) within the gas mixture. By means 
of equation (2.2) the equation of continuity for each 
species i is given by [2, 3] 

dnl a dn~ a 
--dl + ~z (nivi) "~" ~ W ~ [ni(w + IV/)] = K i. (2.4) 

K~ is the rate of formation of the chemical species i in 
unit time and unit volume. By summing equation (2.4) 
for both species and using equation (2.3) the following 
equation of continuity for the entire gas mixture is 
obtained: 

On d 
~ -  + ~zz (nw) = K x + K 2. (2.5) 

Inserting x 1 = nJn  in equation (2.4) gives, with 
equation (2.5), the equation for the total change ofxx in 
the w-reference system, 

(dx ,~  3x, . c3x, 
\ dt /w Oz 

1 a 
- (nl IV1) 

n 02 
! 

+ - [ K 1 - x l ( K I + K z )  ]. (2.6) 
n 

In this general diffusio n equation, the total (substantial) 
derivative (dxddt)~ describes the change of xa with 
time t within a volume element, which is moving with 
velocity w in z-direction. Therefore Oxt/dt is the change 
ofx~ with time t which will be observed at a fixed point 
of observation z = z^ of the diffusion cell. 

In the case of pure concentration diffusion the 
particle diffusion current nlIV x of species 1 in the 
z-direction is given by the following expression of the 
Chapman-Enskog theory [3, 4] : 

n 1IV 1 = - - n D  . (2.7) 
az 

The second gas kinetic approximation of D due to 
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Kihara [18, 5, 6] is given by 

D s = Dt[I  +A(xl)],  (2.8) 

D O 3 (kT/2mn 15) 1/5 
DI = -  Do - -  2 ("~(I,1)*1"/"* "~" (2.9) 

n ~ 8 o '121112 %--12# 

DI is the concentration-independent first approxima- 
tion olD. m12 = mlmz/(mt +n'2) is the reduced mass of 
the two species, k is the Boltzmann constant, and T is 
the thermodynamic temperature, fl]tlal* is the reduced 
collision integral of diffusion, which depends on the 
reduced temperature T* l = kT/~12. The expressions 
(2.8) and (2.9) follow from the kinetic theory by the 
assumption that the intermolecular interaction of two 
molecules may be described by a spherosymmetrical 
two-parameter potential q~(r) = ~f(r/a), q~(r --, oo) = O. 
f(r/a) is the same universal function for all substances, 
r is the distance between the two particles, a is a length 
parameter [q~(r = a) = 0], and e an energy parameter 
(potential well depth). The indices 12 refer to a 
molecular impact of species 1 and 2. 

Contrary to other transport coefficients, D 1 in 
equation (2.9) depends only on the pair-potential 
function q~(1, 2) of the chemically different species I and 
2. This is the great importance of the first 
approximation D 1. The pair potentials ~p(l, 1) and 
q~(2, 2) of chemically identical particles first appear in 
the second approximation Ds, which according to 
Mason [ 19] differs from the exact dillusion coefficient D 
in equation (2.7) by at most 1~o. In most cases however 
this difference is much smaller. Therefore it seems 
reasonable to identify the second approximation D2 
according to equation (2.8) with the proper (measured) 
diffusion coefficient D. Kihara [18, 5, 6] has given the 
following expression for A ( X 1 )  IX 2 = 1 - - X l ]  : 

..~a(x,) 
A(x,) = ~06(o 6C* s - ~ )  b(.---~x ), (2.10) 

a(xl) = Plx~ + I"2x~ + Pisxtx2, 

b(xl) = QtxI +Q2 x2 +Qt2X1X2, 

c*~ = fl?i~ '*/n?:  ,*. 

The quantities P and Q with P, Q/> 0 may be written in 
terms of the mass fraction M = .Mz/,hd I of the molar 
masses of the two species in the following manner : 

.2 I'-I12, 2)* 
11~11 

P1 = O1 ~ 2  ( '~(1,1)* '  
0 1 2 0 ~ 1 2  

2 (-~12,2), 
U 2 2 ~ 2 2  

P2 = a 2 ,  n~t.l), '  (2.10a) 
0 1 2 - 6 1 2  

Pt2 = a3 +aoA*2, 

QI PI( 1+3M2 ~- * = +sMAt2),  

Q2=P2 I+~-I~+ 5MAI2 , 

- 4 1 '  1 3a + 16(2"~1/s PIPs 
- s -  - Wo) 

=8 _L(  .o ),,s 
ao ( l+Al )V a l - A f l t l + A f , ]  ' 

= 1 5 ( l - M ~  s ' a2 = alA[2A[ 112, a 3 \1 +A:f] 

At, = n~,~ '*/n~ 1'*. 

fl(2,21, is the reduced collision integral for viscosity and 
heat conduction of gases. Expression (2.10) is 
symmetrical with respect to the indices I and 2. 
Therefore only the case 0 ~< M ~< I need be discussed. It 
should be noted that, according to equations (2.8) and 
(2.9), nD mnD s = Do[1 + A(Xl) ] only depends on z and 
t in the small correction term A(xl [z, t]). Therefore the 
particle diffusion current nlt$~ is, according to 
equation (2.7), mainly proportional to the gradient 
Oxt/Oz of the mole fraction. These facts are used for the 
first time in this paper to derive expression (2.12) for the 
gradient OD/Oz and the general diffusion equation (2.13) 
in the following Section. 

2.3. The general diffusion equation 
By inserting equation (2.7) into equation (2.6) the 

following general diffusion equation can be obtained. 

Oxl 02x1 OD Oxl 0 In n Oxi 
7 7 = ~  + ~  o~ Oz 

0x 1 

Ljunggren [15], Gotoh et al. [16] and Jescheck [ l ]  
have solved this equation assuming K 1 = Ks = 0 and 
OD/Oz = 0. According to the results, equations (2.8) and 
(2.9), of the kinetic theory of gases, however, for the 
gradient OD/Oz we have obtained the expression 

OD 0 In n 0A(xi) Ox i 
o-7- = -~ + o1 0.,:~ a~- (2.12) 

Therefore by inserting equation (2.12) into equation 
(2.1 I), the general diffusion equation may be written in a 
form suitable for perturbation calculus as 

Oxt 02xl = F(z,t), (2.13) 
ot ~ ~z~ 

F(z,t) = FD(z,t)+ F.(z,t)+ FK(z,t), (2.14) 

sJ aA(Xl)(aXl~" 
FD(z' t)= ' Ox I ~,--ffz-z]' 

axl 
F~,(z,t) = --iv Oz' (2.15) 

1 
FK(Z, t) = - [K l - -xI(K 1 + Ks) ]. 

n 

Oxl/Ot describes the total change ofx  I with time t at a 
fixed position z of the diffusion cell and is therefore the 
quantity measured in our experiments. The main 
contribution is the term DO2xl/Oz 2 on the LItS of 
equation (2.13), whereas the term F(z,t) on the RttS 
may be considered to be a small perturbation term. This 
diffusion equation (2.13) will be solved in the next 
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section by means of first order perturbation calculus for the following initial and boundary conditions, which arc 
appropriate in the case of our diffusion experiments (Fig. 1): 

L 
x t ( z , 0 ) = x l . ,  - - ~ - ~ z < 0  / 

L t = 0, (2.16) 
xt(z,0) = Xlo, 0 < z ~< + ~- 

OZ ]z = + Lt2 

w( + L/2, t) = 0 
t > 0. (2.17) 

3. SOLUTION OF TilE GENERAL DIFFUSION EQUATION (2.13) 

3.1. Solution of  Fick's second law 
In the case F(z, t) = 0, from equation (2.13), the well-known Fick's second law can be obtained, 

Oxl d2xt 
- D - -  ( 3 . 1 )  

?,t dz 2 

This 'ideal' unperturbed diffusion equation describes the non-stationary diffusion of quasi-ideal (perfect) gases or 
gas mixtures in the case of constant diffusion coefficient D. The general solution x~J(z, t) follows from equation (3. I), 
with the estimate x~(z, t) = f(z)ff(t) on account of conditions (2.16), (2.17), as a Fourier series 

x~d(z, t) = x~--yFC~ t), (3.2) 

F~m(z,t) = ~ exp(-a2"Dt) sin a.z, 
.=o a. (3.3) 

x~ = (xt .+Xlo)/2,  y = 2Ax/L = 2(xt .--Xlo)/L,  a. = (2n+ l)n/L. 

The solution (3.2) of Fick's second law, equation (3.1), is the main part of the desired mole fraction x t and was 
previously fully discussed in the case of a system of coordinates with the origin at z = -1 . / 2  in Fig. l [9, 10]: 

The following expressions, which will be used in the next sections, result from equation (3.3): 

OF~~ ~, 
Oz = exp(--a2.Dt)cos a.z, (3.4) 

n = O  

~ - - z ]  = 2 o  . . . .  , . . . .  

b. = 2n~/L, S = ~ exp(--2a~Dt), S + = ~ exp(--[a2.+(a,+b.)2]Dt,  
O.r r = O  n,r r = O  

- t ( 3 . 6 )  

S -  = ~. exp(--[a2, +(a,--b.)2]Dt). 
n , r  r : O  

Equations (3.5) and (3.6) follow from equation (3.4) by multiplying the series term by term and using the relation 
2 cos :x c o s / / =  cos (x - [ i )+cos (~+/ / ) .  

3.2. Solution of  the 9eneral diffiusion equation (2.13) by perturbation calcuh+s 
In the theory for solving partial differential equations, the method for solving equation (2.13) is known as the 

eigen- and boundary-condition problem [20-1. The perturbation term F(z, t) has to be developed for fixed time t in 
terms of the orthogonal eigen-functions sin a.z and cos b.z 

F(z,t) = ~ [U.(t) sin a.z+G.( t )cos  b.z], a,, = (2n+ 1)n/L, b. = 2nn/L. (3.7) 
n = O  

A corresponding general estimate with the same coefficients a. and b. is attempted for the desired solution xl(z, t) 

x t (z , t  ) = ~ [u.(t)sin a.z +g.(t)cos b.z]. (3.8) 
n = 0  

The Fourier coefficients u.(t) and y.(t) may be determined ifthe Fourier coefficients U.(t) and G.(t) of equation (3.7) 
are known. For this purpose equation (3.8) is inserted in the LHS of the diffusion equation (2.13), which is then 
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equated with F(z,t) in equation (3.7). Thereafter the two linearly independent expansions in the sine and cosine 
functions are separated. Comparison of coefficients yields the following system of ordinary inhomogeneous 
linear differential equations : 

dg,,(t) 
- -  + Da~u.(t) = U.(t), ~ + Db~g.(t) = G.(t), (3.9) 
du~(t) 

dt 

which have the general solutions : 

. . ( t )  = .~~ + z,~' ~(t), ut~~ = C~ exp(--a2Dt), u~"(t) = exp(--a~Dt) U,(t')exp(a2Dt')dt ', (3.10) 

fo ato){t~" + ,~( t )it ~ g,(t) = ~, . . . . .  , , ,  g~~ = C~ exp(-b2Dt) ,  gtJ)(t) = exp ( -b2Dt )  G,(t')exp(b~Dt')dt'. (3.11) 

The coefficients C~ and C~ are available on inserting equations (3.10) and (3.11) into equation (3.8) and adapting this 
expression to the initial and boundary conditions (2.16) and (2.17), 

C ~ = x ~ ,  C I = 0  (n>0) ,  C ~ , = - y / a ~  (n>/0). (3.12) 

Therefo re on account ofequations (3.2) and (3.3) the sol ution ofeq uation (2.13) with conditions (2.16), (2.17)is given 
by 

x t(z, t) = xita(z, t) + x(t 1"2'(z, t) + x~ t'a'(z, t), (3.13) 

x~t'2)(z, t) = ~ gtj)(t) cos b,z = .x~ ~'2'(- z, t), (3.14) 
n = o  

x~l"a)(z,t) = ~" @)(t)sin a,z = --x~Lal(--z,t). (3.15) 
n = o  

The main contribution to the (measured) mole fraction x~(z, t) in equation (3.13) is the mole fraction x~d(z, t), 
according to equation (3.2), for 'ideal' diffusion. The correction terms x~ 1"2) and x(t 1'3) are due to the perturbation 
term F(z, t) of equation (2.14). They may be determined according to equations (3.14) and (3.15) if the Fourier 
coefficients g~) and t+~ ~ are calculated by means of equations (3.10) and (3.11). To do this the Fourier coefficients 
U,(t) and G,(t) of the estimate (3.7) must first be determined by inserting into the LHS of equation (3.7) physically 
reasonable expressions for F o, Fw and F r. Then these single perturbation terms may be evaluated explicitly if 
x~(z, t) is replaced everywhere by the first approximation X~d(Z, t) according to equation (3.2), which is ofcourse the 
main term in the perturbation solution (3.13). In the same approximation Oxt/Ot may be replaced by the RHS 
DO2xt/Oz 2 of Fick's second law (3.1), a term simply integrated if one assumes that D is (only for this purpose) 
independent of position z. 

3.3. Estimates of n, OA/axt, K1, K2 and w 
3.3.1. Estimate of  n. If one assumes local thermal equilibrium in the gas mixture the following second 

approximation for the molar volume v of the mixture is obtained: 

I N^ R T  p 
v = - - ( l + x ) ,  x =  B~,(xI,T ), (3.16) 

c n p R T  

B,~ = Bt ,x~ + n,,x22+ 2B ,2x , x ,  = fl3+ fl2x, + fl ,x 2, 
(3.17) 

f13 =B22, f12 = 2(Bt2--B22), fit = B I I + B 2 2 - 2 B I 2 .  

~, is the desired particle number density, c is the molar density, N^ is Avogadro's constant, and R is the molar gas 
constant. T is tile thermodynamic temperature, p the pressure and B~ the second virial coefficient of the gas 
mixture. The virial coefficients B1 t, B22 of the pure components and the mixing virial coefficient B: 2 depend in each 
case on the intermolecular interaction pair-potential tp(l,1), ,;0(2,2) or tp(l,2) and in other respects only on 
temperature T. In the case of the relatively strong imperfect gas mixture C(CH3)+(1)--Ar(2 ) at T = 332 K and 
p = 1 bar we have for example: B:I = --74'7.4 cm a mo1-1, B22 = --9.8 cm a mo1-1, S t 2  = -65 .7  cm a mo1-1. 

Since x~ = x~(z, t) equation (3.16) describes the dependence of v, c and n on position z and time t in the diffusing 
gas mixture. Thereby p = p(t) is nearly independent of position z, since pressure changes propagate with the 
velocity of sound through the gas mixture. By equation (3.16) one gets immediately 

In c = In p ( t ) /RT- ln (1  +x), ln(1 +x)  = x - -x2 /2+xa /3  T- . . . .  ~ ( -  1) t - I  
X I 

_ ,  (--1 <x~<  +!) .  (3.18) 
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In the case of an equimolar mixture of C(CH3)4-Ar at p = I bar, T = 332 K we have x = --0.008. Therefore the 
series expansion of In (I + x) may be truncated after the first term, as has been done before [ 15-1. Moreover x may be 
replaced by Xo if p in x is replaced by the constant initial pressure Po = p(0), since in the corresponding isochoric 
diffusion experiments [(p(t)-po)/P01 < 0.01. Then instead ofequation (3.18) the following approximation of In c is 
obtained : 

In c = In p(t)/R T--Xo(Z, t), Xo(Z, t) = ~TT [f13 + fl ,xt(z, t) + lltx~(z, t)]. (3. 19) 

With respect to the above given experimental conditions, the difference in In c, calculated with equation (3.18) or 
(3.19), is only 0.1 ~ .  I n other cases the correct formula (3.18) with p(t) may be used, or the approximation (3.19) may 
be expanded to any extent in powers ofxo, whichever is desirable. 

3.3.2. Estimate of  OA/ax 1. According to the kinetic theory equation (2.10), OA/cgx i may be calculated exactly. The 
resulting expression 

aA = A(xl)Fd In a(xt) d lnb(xO.- ] 

Ox , L -d~l dx, _1 
is however too complicated for perturbation calculus. Since on the other side A(xl) may, with respect to the 
experimental uncertainty, be well approximated by a polynomial of second order, the following estimate seems 
reasonable for perturbation calculus : 

dA 
A ( x l ) = c 3 + c 2 x  l + c l x  2, ~ = c2 + 2ctx p (3.20) 

Ifone sets c3 = 0, the diffusion coefficient D(0) may be identified with the first approximation D~ ofthe Chapman- 
Enskog theory according to equation (2.9). This is, however, not true in all cases, but is an approximation often 
used [5]. 

3.3.3. Estimate o f K  I and K 2. According to equation (2.4), K 1 and K 2 are the rates of formation of chemical 
species I and 2 in unit time and unit volume ofthe gas mixture, which has to be considered as a single phase system. 
For this system the equations of continuity (2.4) and (2.5) are valid. Strictly speaking Ki ~- 0 therefore means that 
chemical reactions are occurring in the mixture [3,5-1. On the other side, sorption phenomena should be 
considered in a thermodynamically strict sense regarding the mixture as a system open to additional phases which 
act as particle sinks or sources. This concept was firstly used by Gotoh et al. [16], who considered gas sorption at 
the ends and in the shearing plane of their Loschmidt diffusion cell by introducing two additional phases and 
adequate equations of continuity, tlowever, on account of their lack of information about the equilibrium gas 
distribution between the three phases before diffusion, of the source strength and the sorption mechanism, the 
corresponding free parameters, for instance distribution coefficients and desorption constants, are misleadingly 
adjusted so that D = D(x I = 0.5) comes out to be independent of concentration in most experiments for tile mole 
fraction range investigated, 0 ~< xl ~< 0.5 (Section 1). 

In our diffusion experiments with neopentane C(Ct I3)4, sorption ofthis gas by the silicon grease in the shearing 
plane z = 0 of our diffusion cell was observed too. These observations were confirmed by additional independent 
isochoric sorption experiments with pure neopentane and other gases, which have shown no measurable sorption 
by the V2A-walls of our diffusion cell at p = I bar. On account of the large volume of the diffusion cell (about 700 
cm3), the local fixed particle source or sink in the shearing plane was so weak that the total particle number density, 
n = nt +n2, of equation (2.6) was only slightly changed until the proper diffusion current Ih IV1 in (2.7) had died 
away. This change ofn was experimentally observed by means ofcontinuo us pressu re measurements, which give us 
more information about the gas sorption kinetics than Gotoh et al. [16] had. Therefore, in contrast to their 
concept, our intention is to treat gas sorption like chemical reactions, and to determine rates of formation Kl of 
sorption with the aid ofthe pressure measurements. Since sorption ofthe other diffusing gas components like Ar or 
CIt., was not observed we assume in the following sections IK d >> IK21 or K2 = 0. On the other hand, sorption is 
always small even in the case of neopentane as mentioned above. Therefore, we assume for simplicity that 
Kl(Z, t)/n(z, t) = k ~(t) is only time dependent, which is in accordance with our intention to determine this property 
by means of p(t)-measurements. To summarize we make the following assumptions: 

K t / n =  K t v / N x  = kl(t ), K 2 = 0. (3.21) 

3.3.4. Estimate of  w and pressure change during isochoric diffusion, w may be determined by means of the equation 
ofcontinuity (2.5) for the gas mixture. Replacing n in this equation by the molar density c = n/N^ and dividing by 
c ~ 0 the following inhomogeneous linear differential equation in w is obtained : 

a ln c dw a ln c I K t + K  z 
w + - -  q (3.22) 

~z dz at c N x 
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The general solutions of equation (3.22) for the lower (--) and upper (+)  half-cell are 

( f =  dine ) I  f• (Olnc IK,+K2'~ ( f r  d i n e  ) ] w• = exp -- dz' C -  - - j e x p  + dz" dz' . (3.23) 
• OZ' LI2 Ot c • 0Z" 

It is necessary that C = 0 since ~(4- L]2, t) = 0 according to the boundary conditions (2.17). Moreover according to 
equations (3.19) and (3.17), for all z in 0 ~< Iz] ~< L]2 and t >/0, 

]r z .  • < ~ O z '  ~P~ .B,l_B221. (3.24) 

In the case of the imperfect gas mixture C(CIt3)4-Ar of Section 3.3.1, the RHS of equation (3.24) has the value 
0.027. In the case of the observing positions used, za = -I- I,/3, the LHS ofequation (3.24) is however smaller than 
0.002. Therefore the exponential expressions in equation (3.23) are about 1.0 [exp (-t-0.002) = I -I-0.002]. With 
these conditions and equations (3.19) and (3.17), w• in equation (3.23) may be approximated by 

f :  (0  In v . KI+K2"  ~ 
W• • \ Ot - t - v ~ j  dz' J 

(3.25) 

f f ; : Ox I , 1 v(K l+K2)dz'. d In p dz '+  Po " (fl2+2flxxx)~-dz +--~A 
• dt - ~  • • 

Since w_(0, t)-w+(O, t) = 0 the pressure change during diffusion in the entire diffusion cell -L/2 <~ z <~ +1./2 
follows from equation (3.25) as 

d l n p  = l - - / / ' d  In p'~ + / - - / / ' d  In p~ ( d l n p ' ~  = _ ~ l f + L t z ( ~ z + 2 f l , x , ) O X l d z ,  ' 
d, :,1 : . '  o, ,,1 - - ,  J - . 2  

(3.26) 
: d l n p ' ~  1 l f*Ll2 
~----dT--] K = ~--~A-~ j_t./2 r(K, +Kz)  dz'. 

The first contribution (subscript M) describes the pressure change due to the pure mixing volume effect at 
constant particle number whereas the second contribution (subscript K) follows from particle number changes 
by, for example, gas sorption at the walls of the diffusion cell or chemical reactions in the gas mixture. After 
inserting equation (3.26) into equation (3.25) one gets 

w• t) = w M • t) +,,v K • t), 

f : [ KI + Kz 
w K •  L~ -N-T,, 

• LI2 

= Po Oxl wM• - : d  l np~  ] - \ - - 7 ~ A d  dz', 

dt ]KJ 

(3.27) 

wsl(z, t) is the mean particle velocity due to the mixing volume effect and wx(z, t) the mean particle velocity due to 
particle number changes. Inserting the estimates (3.21) for KI, K 2 into equations (3.26) and (3.27) gives 

---~-'~ = kl(t), WK(Z, t) = WK• t) = 0. (3.28) 
t ]K 

This simple and physically reasonable result is of great importance for the evaluation of diffusion experiments. 
Equations (3.26) and (3.27) may be explicitly evaluated by using the approximate relations x I = x~ a according 

to equation (3.2) and Oxffdt according to equation (3.1) and obeying the conditions (2.17). l fD is assumed to be 
independent of position z only for the purpose of simple integration, the result is 

z ,9xi z 0x I z 
f • ([32-1- 2fl,x,)~t dz' = D[(,2 + 2fl,X,)-~-z -- 2fl, f • (-~-z, ) de'], 

(3.29) 
[( L~2 ] ~, V + l -lsin b: f~ (OX' y dz' = y2 z-T- - S + I  I =  L - -  Is  ( t )+~s- ( t ) |  . -  . 

J •  2 o , .  . = , .  . . . . . .  . v.  

Tile last two expressions result by using equation (3.5). Therefore, in this approximation, according to equations 
(3.26) and (3.27), 

t ] M  (3.30) 
poOV aF '~ -/.-.OF (~ "~-1 

WM• (z, t) = -- ~ L(fl2 + 2 f l t x ' ~ )y -~ -  z -- 2fl,yZ~kFtV' az -- I J J  = ,%,(z, t). 
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Integration of equations (3.26), (3.28) and (3.30) with respect to time t gives 

In p = In PK +In PM, P = pr, av~t. (3.31) 
Po Po Po Po 

p(t) = po+Ap(t) is the measured pressure during the diffusion experiment. Therefore equation (3.31) may be 
written in the following manner : 

I n ( l + A P ' ] = I n ( l + - ~ o n ) + l n ( l + - ~ o S l  ), I n ( l + - ~ - ~ ) = ~ i k l ( t ' ) d t ' ~ A P K ,  
Po / Po 

(3.32) 
In( l + AP'~'] = -- OP~ y2Ft"(t) ,,m ApM, Ap ,~. Apv. + Apm 

Po ) RT Po 

f l  ~ l--exp(--2a2"Dt) 
Fro(t) = S (t') dt' = 2a2D (3.33) 

O,r r=O 

The approximative relations in equations (3.32) are valid only if the corresponding relative pressure changes 
Ap/po are small enough, which was the case in our diffusion experiments. 

According to equations (3.32) the contribution Ap~ t to the total measured pressure change Ap may be 
calculated if fll is known. This calculation may iteratively be corrected by inserting p(t) instead of Po in the 
factor DpoflJRT, a correction only effective for large t values [1]. If Ap~t and Ap are known, the contribution 
ApK = Ap--APst due to sorption may be determined. Differentiation of AprJp o with respect to time t then gives 
the velocity law kt(t) for gas sorption according to equation (3.21). On the other hand the coefficient fit, and 
therefore the mixing virial coeff• Bt2, may be determined in the limit t --* oo if ApK = 0 and if the viral 
coefficients Bt 1, B22 of the pure gases are known [Fm(t ~ co) = nx/16D, see Sections I and 4]. In this sense, 
self-consistent diffusion measurements are possible. 

3.4. Evaluation of the perturbation terms 
To evaluate the perturbation terms Fr,, Fw and Fr  of equation (2.15), the approximations xt = x] d and 

Oxt/6t = DOZx~/dz z are used in the same manner as in Section 3.3.4. With the above estimates of aA/Ox~, w, 
K~/n and Kz/n, it can be shown that 

2fllPoD 3 . . . .  OA [tOXl~ 2 OX 10.._._~= _ C w ) , Z x z + ~ _ y . . .  
F .  = O, ~xt k--~z ) = cDy2Y.2-- 2D,cty3Z3, F .  = - w  M (L3.-- L4I Fw~,, 

[ 

(3.34) 
i 

FK = - [ g l - - x t ( g t  +g2) ]  = kt(t)[1 - x t ]  = kt(t)[l -xT+yF(m],  
tl 

Po D m (0F(~  OF(~ 
co=Dt(c2+2c,x~) , cw=--~(f l2+2fl tx t) ,  Y-2=~,--~-z ] ,  Y.3=Ft~ Y- .=-- -~z  L (3.35) 

Z 2 is given by equation (3.5). Using 2 sin ct cos fl = sin(ct-fl)+sin(cc+fl) and equation (3.3), by multiplying 
the corresponding series term by term and rearranging one obtains 

Y3 = ~ S3.(t) sin a.z, 
.=o (3.36) 

[ ,s ,, s3.(t)= t s*., +5 . ;  , ,,.-b,. _lr 

Z4 = ~. S4.(t) sin a.z, 
.=o (3.37) 

E is] 1 ~ S++~. , . ,  S4.(t) = ~.,=t ,... [exp(--[a"--bm]2Dt)-exp(-[a"+b"]2Dt)] " 

Therefore the coefficients U.(t) and G.(t) of the Fourier series (3.7) are, in this approximation, given by 

Go(t) = k,(t) [1 - x~] + (c D -  Cw) 2 S, (t), (3.38) 

G.(t) = (cD--cw)y 2 .+ + , 
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3 2fllpoD 3 U,(t) = ykl(t) exp(-a2Dt) 2ciD,y S3,(t)+ ~ y  [Sa,(t)-Sa,(t)], (n >1 0). (3.40) 
On 

Finally these expressions may be used to calculate the desired coefficients u(, '*(t) and gt~)(t) according to cquations 
(3.10) and (3.1 l), respectively, and the desired correction terms x(,X'2)(z, t), x~,l'a)(z, t) of the mole fraction x,(z, t) 
according to equations (3.14) and (3.15) 

Ap,  ,2 

x~'.2~(z, t) = g~o'~(t) + (cD- c,,b '2,~2'(z, t), g~o l~(t) = I1 - x'~] + (cD- c,,.) ~ Fro(t), 
Po z (3.41 ) 

Ft2)(z, t) = ~ exp ( -  b 2 Dt)S(A, B) cos b.z, 
n = l  

,F (~ -.t Apr. 

[s(s,r) s(~,~t)-I 
Fta)(z't) = .=oL exp( -a2ot).=,L/La-'~--~ + ---Sma.+bm_j " a.z, (3.42) 

FC4'(z't) = i e x p ( - a j D t )  ~ ~-~-s 
n = O  m = l  

Fro(t) is given by equation (3.33). The following abbreviations are used: 

S(X, Y) - ~. 1 - e x p ( - X t )  =1"-~* l - e x p ( -  Yt), (3.43) 
,=o X +Z,=To Y 

A = 2Da,(a, + b.), 

E = 2D[a,(a, + b~) + b, .(b,-  a.)], 

G = 2D [a,(a, + bin) + b,~(bm + a,)], 

In Fig. 2 the reduced functions 

B = 2Da,(a,-- b.), 

F = 2D [a,(a,-- b~) + b~(bm- a,)], 

t l  = 2D[a,(a,- bin) + bm(b~ + a.)]. 

f m = ( ! ) F m ( t ) ,  

fta)=(-~r)FCa'(z,t), 

fl~)=(!)FC2)(z,t), 

= L2 / z 2 D,  

(3.44/ 

/ 

0.8- 

0.5 

O.l 

oo , ~ "  

-0 .3  ~ �9 , , 
0.1 0.5 1.0 

�9 , ) 

2.0 3'.0 /.'.0 5 ' .0 6'.0 7.0 
) t i t  

(.) (.) Fro. 2. The reduced perturbation functions f (L/3, t/r) according to equations (3.44) (f  changes sign in the 
cases z^ = -- L/3. n = 0, 3, 4). 
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o.3oT f(o) 

0.25 

~ / f(2)+ ~_ f('l) 
0.1 

0.10] [ f(O). f(1)+f(3) 

f(o). fO)§ f (3) _ [(4ff"~.~.,....~ 

ooo,~.. . / /~. , ~ " -" : ' - ' - - - - - -~  , , 1 i 

10.1 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 
-0.025t > t / 7" 

F~.3.  C~mbinati~ns ~f the reduced perturbati~n functi~ns fc"~( L/3~t/z) whi~h are used in equati~ns ( 4.~ ) (4.4) 
(fo) changes sign in the cases z^ = - L/3, n = 0, 3, 4). 

are drawn versus the reduced time t/z = nXDt]L 2 in the case of the measuring position z = zA = + L/3. In the case 
z^ = - L/3 the pari ty of the sine and cosine functions has to be noticed according to equations (3.14) and (3.15). 
The reduced functions (3.44) need only be calculated and tabulated once for all diffusion measurements at the 
same positions zA and - z ^ ,  since this calculation is very time-consuming. In Fig. 3, combinat ions of these 
functions are shown which are important  in equations (4.1)-(4.4). 

4. DISCUSSION 

The general diffusion equation (2.13) was solved with first order per turbat ion calculus. The main contr ibution 
to the mole fraction x1(z, t), which is identical with the mole fraction measured in our diffusion experiments, is the 
solution xitd(z, t) of Fick's second law (3.1). The correction terms x(t t'2)(z, t) and x~ t'3)(z, t), which are explicitly given 
by equations (3.41) and (3.42), are determined with the following assumptions : 

(1) The gas mixture is only weakly real. 
(2) The diffusion coefficient D is independent on posit ion z only in deriving equations (3.29) and (3.30). 
(3) The velocity law kt(t ) for gas sorpt ion is only t ime-dependent,  i.e. w K = 0. 
(4) xt(z, t) may be replaced everywhere by xita(z, t) in calculating the per turbat ion term F(z, t) in first order. 

The same assumptions were made by other authors r l ,  15, 16]. Nevertheless, the results of this paper differ 
considerably from the results of these previous papers. The main reason for this is the fact that  the perturbat ion 
terms F o and FK according to equations (3.34) are used in this paper  for the first time. Moreover  the term 
O(O In n/0z) (Oxt/Oz) of equation (2.11) was cancelled in the exact diffusion equation (2.13) but not in the diffusion 
equations used by the other authors [1, 15, 16]. This means that  the expressions ofcw and Z 3 in equation (3.34) for 
the per turbat ion term Fw are only one-half of the corresponding expressions used in the earlier works. E.,, 
however, is unaltered. In the resulting equations (3.38)-(3.42) the expressions ofcw, S3,(t) in the square bracket on 
the RHS of equation (3.40), --Ap~vtpo and (pof l tD]RT)F ~ in equation (3.42) are just only one-half  of the previous 
corresponding expressions. 

To understand the following discussion somewhat better it seems reasonable to rewrite equation (3.13) for the 
measured mole fraction x~(zA, t) in three terms according to the three effects which cause them, 

XI(ZA, I ) = X l D + A X I w + A X l K ,  (4.1) 

m F2'X "ol 
XID(zA, t ) = X~d+AXtD = x , - [ - l & x f  t + A x t o ,  (4.2) 

k n /  
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(cD'~(2 Y c,D, 2 ~ 

2 2 Point 2 3 3 

AXtK(ZA.t) = [l--.Xild]-~F=OK = r l--x"~ +(2~Ax f '~  (4.4, 
L krC] 3 Po 

Equation (4.1) may be considered as a power series in Ax = x~,-Xlo.  Omitting the term D(d In n/az)(axtlaz) in 
the diffusion equation (2.13) has the consequence that the expressions of cw and.[f(~ in equation (4.3) 
['or Axt~(z^ , t  ) are only one-half of the corresponding older expressions [1, 15, 16] as just mentioned. In 
remembering this Jescheck was the first to derive the complete expression of Axlw corresponding to equation 
'4.3) and use this correction term in evaluating diffusion experiments with pure gases [1]. Gotoh et al. [16] have 
investigated the diffusion of pure real gases too, but they omitted the corresponding term in (Ax, 3 in equation (4.3) 
completely. They used, however, the corresponding term in (Ax) 2, whereas Ljunggren [15] used the pure time- 
dependent term - c~.2(Ax)2fm/Dn 2 in equation (4.3) twice to evaluate his diffusion experiments with diffusing gas 
mixtures ofAx = 0.1. Gas sorption was considered only by Gotoh et al. [16] and Jescheck [1], but both times in a 
more empirical manner and not as consistent as equation (4.4). The concentration dependence of D was not 
considered like equation (4.2), which is a result of the perturbation calculus described above. 

Since all f("Lfunctions vanish in the limit t --, oo, except fro(t) which gives f")(oo) = r~2/16 = 0.616850, the 
following limit ofxt(zA, t) results from equation (4.1): 

-- (,,x), + tl-x ,] ( " p ' : l .  (4.5, l i m x l ( z ^ , t ) = x  I - 8D \ Po )oo 

The kinetic expressions (4.1)-(4.5) show that the concentration dependence of the diffusion coefficient D is 
incorporated in the measured mole fraction XdZA, t), as in the statement given previously (Section 1). 

It is very interesting to compare the kinetic result (4.5) for the thermodynamical equilibrium state of the gas 
mixture after diffusion with the limit xt(oo), which is given by pure thermodynamical considerations. According 
to the approximation (3.16) for the molar volume v the mole fraction xt(oo) after diffusion is, in the case ApK = 0, 
given by 

nl. + nto Vdv, .  + Vo/vto 
x,(co) (4.6) 

(nt.+v2.)+(n~o+n2o) )~/v=. + Vo/Vmo 

V. and Vo are the volumes of the two half-cells and are equal in the diffusion apparatus, yr. = R T / p t . + B t ~  
s the molar volume of gas 1 after adding it to the evacuated volume V. up to a pressure p~.. Thereafter, gas 2 
s added up to a pressure Po = p(0), which according to equation (3.17), corresponds to the molar volume 
~,.~(x~) = RT]po+B22+[12xt .+[l lx~.  of the binary gas mixture with mole fraction x t .  = t,=Jt,~ of gas 1 
9efore diffusion. If the corresponding meanings are given to Vto, Vmo and Xio one gets with 1~ = V. after some 
algebraic manipulations 

1 v=~-vmo Ax = x'~ 1 c~/O (Ax)2, (4.7) 
xt(oo) = xT-- 2 2v,~. +t',.o - 4  1 +---"A 

A = Po [B22 +/~2x, ~ + fll(2Xt~2 --XluXlo)]" (4.8) 
R T  

Equating equations (4.7) and (4.5), in the case Ap~: = 0, gives 

I - A  
CD=D _ ( c , ~ ( ~ ) . \ D )  (4.9, 

l'his equation (4.9) connects the kinetic variable CD/D with the thermostatic variables c,,/D and A and may be 
Jiscussed in the case xt~ = 1, Xlo = 0, which are our experimental conditions. Using the virial coefficients of 
~ection 3.3.1, for the system C(CH3).~-Ar at p = 1 bar, T = 332 K, gives 

cw/D = ( B t t  -B22)Po/RT = --0.0267, A = (B~t + B22)Po/2RT = --0.0137, 

1 . t (c" /D'~=0.50677,  co c2+ct  c . ( 1 - - A ' ~  
x,(~) = "-~\1 +AJ ~ = I ~ S ( ~  m) = B k l  + M  = 0.0275. 

(4.10) 

l'his wllue ofcu./D seems reasonable since c 2 -t-c I = D(1)-D(0) is the difference of the diffusion coefficients in the 
.imitingcasesxl = I andx I = O, and is therefore of the order of 3%. On the other hand, we have c,,/ D = cD./ D = 0 
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only if Po = 0 (vacuum conditions), T ~  oo [perfect gas mixture with B I I ( T ~  co)= B22(T--* ~ ) =  0] or 
BIt(T) = Bzz(T), which means self-diffusion (interdiffusing gases with identical particles and therefore 
identical interaction pair-potentials). These condit ions seem very reasonable too, a l though the dependence 
ofco/D on po/RT like equations (4.9) and (4.10) is not  inherent in the Chapman-Enskog  kinetic theory of gases 
as was shown in Section 2.2. This is, however, not surprising since equations (4.9) and (4.10) are obtained by 
connecting the result, equation (4.5), of kinetic per turbat ion calculus with the result, equation (4.7), oft he conserva- 
tion of mass in a diffusion experiment. 

Some addit ional  points should be mentioned at this stage. First ly the mixing virial coefficient B12 does not 
appear  in equation (4.10), which is of great importance for the evaluation of diffusion experiments with gas 
mixtures of unknown B I2. Secondly, the case co/D = 0 may also occur ifA = I in equations (4.9) and (4.10), which 
in the case Po = I bar means RT o = (BI I + B22)/2 and c,,./D = 2(BI 1 --  B,2)/(B~ 1 + B22)" By compar ing this result 
with the second Kihara  approximat ion  (2.10) this definite temperature To may  correspond to C]'2(To*) = 5/6, in 
which case To* = kTo/e~z is of the order of 1.0 for many interaction pair-potentials [3-1. 

To demonstra te  the magnitudes of the correction terms in equations (4.1)-(4.4), we finally give numerical 
values for the same conditions as in equations (4.10), 

xl(zA, t ) = XID + AXtw+ AX1K , XID(ZA, t) = 0.50000--0.63662ft~ 

AXlD(Z^, t) = 0.01113 [ f ~ ' i + � 8 9  +0.00774 [f(OIf(li+fC3)], 
(4.11) 

AXl,,(ZA, t) = 0.01083 [ f~21+�89 [ f~O) fm+fOI fOI] ,  

Ap.....__~ 
AXlK(ZA, t ) = [0.50000+0.63662f~0~] ApK ~ ~ = 0.009. 

Po ' Po \ Po }oo 760 

Some remarks concerning gas sorpt ion will conclude this discussion. 
(1) The last expression in equation (4.11) for AXIK(Z A, t), and therefore equation (4.4), obviously hold only for 

the lower half-cell ZA < 0, because f  ~m is not symmetrical  with respect to the sorpt ion source (sink) in the plane 
z = 0. Since this asymmetry with regard to adsorpt ion (ApJpo < 0) and desorption (ApJpo  > 0) seems to be 
physical lyunreasonabte,  we assume that x~ d = l - -x~dinequa t ion(4 .4 )has toberep lacedbyx~a  for theupper  half- 
cell z A > 0 

AXlK(Z A < 0,t) = ApK X~d(ZA < 0, t), AXlK(Z A > 0, t) = ApK x~d(zA > 0, t). (4.12) 
PO PO 

(2) The simple results Ax~,~. = Ax~,,.~l in equation (4.3) as well as Ax~K in equations (4.4) and (4.12) are mainly 
determined by the simplified estimates (3.21) of KIv/N A and K z for gas sorption. However using the 
approximat ion (3.16) of r(z, t) the following more general estimates may be used: 

Kll) Kl(t) I R T  + Bm(.4~)J = k,(z,t), K2 = 0, B~(xli d) = fl~ + fl~x~: + fl ,xi: 2. (4.13) 
N, =  I_T 

K ~ = K l(t) seems to be reasonable,  because the sorption source or sink is only weak and limited to z = 0, as it was 
in Section 3.3.2 too. Using equation (4.13) for per turbat ion calculus has some impor tant  consequences. 
According to equation (3.26) the first equation in equations (3.28) is now given by 

( d  In p'~ (Kl( t )~rRT+Bm(x,~)+f l l~2A,  ol=k,~(t), (4.14) 
= L - 7  - 

and the second equation by 

WK(Z,/) = WK• = 3(fl2+2fliX'~) COS anZ+fllYin~_ 1 , , s in  b,z . (4.15) 

The last equation fulfills the boundary  conditions (2.17) and goes to zero in the limit t ---, co. The following 
abbreviat ions are used: 

h,(t) = exp(--a2~Ot), f~(t) = h~(t)/a,, a ,  = (2x+  l)rr/L, 
t l - -1  

A,,o(t ) = ~ ./-2, A,.,>.I(t)= ~ frf,+~--�89 ~, f~f ,- l- ,"  (4.16) 
r=0  r=O r=0  

On account of equations (4.12)-(4.15) the per turbat ion terms F K and Fw = F~.~I in equation (3.34), the last due 
only to the mixing volume effect, have to be modified in the following manner :  

Fw = FwM+F.K, F.K = --WK 0--'-7' (4.17) 
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(Fro- = kl(z < O,t)xi2d(z < O,t), 
FK FK + ka(z > O,t)x~d(z > 0, t). (4.18) 

Using the expression (3.2) for x~ d and some trigonometric and algebraic manipulations,  F K may be written as a 
Fourier series according to equation (3.7) as follows: 

/ 'Kl(t)\V ~o" FK = ~--~-z)LCo+C,F '+C2Ft~ +CsF `~ = .=o ~ [U.K(t)sin a.z +G.r:(t)cos b: ] ,  

Ka(t) C2 
GoK(t)=(---~A )[Co+--~-A,.o(t)], G.K(t,=~--~A))C,A,..(t ,, (n>~ 1), (4.19, 

c3 [A+,+f,-d}, >i 
According to equation (4.18) the coefficients Co, C1, C2, Ca in equation (4.19) are given e.ither by the minus ( - )  or 
plus (+)-set of coefficients (4.20) 

Co-=[R:+Bm(X~')][I--x~],  

RT m ~ m 
Ca - =  3 '{[ - - -~-+Bm(xt) l - - [ f lz+2f laxa]  [1 - -x t  ]}, 

C 2_ = y2{fl a - - f l 2 - - 3 f l l X t ~ } ,  

C3- = y3fla, 

Co+ =IR~Tp+Bm(x~)]x~, 

fVRT ,~ 1 ] 
c ,  + = - y g / - -  + Bin(x1 ) |  q'- [f12 -t- 2 f l l X t ~ ] X r ~  , 

J (L P A 

c2 + = y2{/h + 3/hxT}, 

C 3+ = --yafla. (4.20) 

In the same manner  the perturbation term F,,. K may be written as 

F,,K = ~ {U.,K(t)sin a.z+G.wK(t)cos b.z}, 
n=O 

:KI(t)" ~ K t  ~ n - I  
Go,,K(t) = ~,--N--~AJ C.,A,o, G,,.~(t)= ( ~ ' ~  C,[  ~, (Jr h,.+,,+ f~+'/,,.~ + ~ ~ h,_,_,.], (4.21, 

' , ,  NA / L , = o k a ,  a , + .  / ,=o  , _J  

Kx(t) C3- 0o Ark 

In order to calculate by equations (3.10) and (3.1 I) the corresponding desired coefficients u~l)(t) and g~l)(t) for the 
mole fraction changes AXlK due to F K and Axl,, K due to F,,. K the Fourier coefficients ofequations (4.19) and (4.21) 
have to be integrated with respect to time t. For  this purpose Kl(t ) must be known, which seems to be the main 
problem. However the following approximation is evident. On account of equation (4.14) we have 

Kl ( t ) -K( t ) (dP)  N A -dt K' K(t) = {RT+p[Bm(xT)+fltyZA,.o/2]}-t. (4.22) 

K(t) may be calculated exactly for each gas mixture and time t according to its definition. However since 
(Ax)2/4 ~> yZA,.o/2 >1 0 for 0 ~< t < 0% we may, by the same arguments as in Section 3.3.1, in realistic cases 
assume K(t) to be nearly a constant mean value K o, which leads to the further approximation : 

- ~  - go K' Ko = {Rr+po[Bm(x~)+,6,(Ax)2/8]} -1. (4.23) 

For example in the case of the diffusion of pure C(CH3).~ in pure Ar one gets for the conditions given in Section 
3.3.1 (T = 332 K, Po = 1 atm, x'~ = 0.5, (Ax) 2 = 1 : K(0) = 3.772 x 10 -~, K(oo) = 3.701 x 10 -5, Ko = 3.712 
x 10 -5 (units: tool cm -a a tm- l ) .  

The pressure change from Po = 1 atm to e.g. Po = 0.99 atm in equation (4.23) corresponds in this case to a 
change of 3 x 10-9 mol c m - s  a tm-1  in K o and is therefore negligible. 

Using the simple equation (4.23) for integration with respect to time t has the following great advantage. I f f ( t )  
is some arbitrary function of time t one obtains by partial integration and the use of the mean-value theorem of 
integral calculus with equation (4.23) 

N--~ Ka(t')f(t') dt' = Ko{[PK(t)--`OK(t')]f(t)+[pK('D--pK(O)]f(O)}. (4.24) 

,0K(F ) is a mean value of pK(t) in the time interval 0 ~< t'~< t. If for simplicity the arithmetic mean `O~: 
= [pK(t)+pK(O)]/2 is chosen as an approximation one gets the very simple relation (4.25), which is used 
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in all further calculations, 

d r '  N-~flKt(t')f(t') APp~(t)(-K-~)[f(t)+f(O)], (4.25) 

ApK(t) = pK(t)-- pK(O). 

ApK is the pressure change due to gas sorption effects, which may be determined experimentally as described in 
Section 3.3.4. Now it is possible to calculate the mole fraction changes Ax ,K and Axe,, K. The following results and 
the abbreviation B are used: 

:~o[' ] :~'~r,' - ' , }  ( ~ )  + 1 _ Ap~(t) 
- t , V / L T - , _ _ E o ( 2 - 7 7 1 )  ~ , l~ . . . .  . (4.26) A'~ a'">t(0)=0' '"  , ~ a,+,, Po 

Equation (4.19) gives 

Ax,r: = ~ [u~,~(t) sin a.z + O~.~(t) cos b,z]. O~o~(t) = B[2Co + C2(A,.o + L2/8)/2], 
n=O 

(4.27) 
9~(t) = BCIA .... (n >i 1). u~,~(t)= B{[2C, +C3(A,.o+I?/8)/2]f,+(Ca/2) ~ A,.~,[fk+.+f,,-k]}, 

k = l  

with the coefficients Ci given by equations (4.20). Equation (4.21) gives 

kx,,,K = ~ Eu~,~!K(t) sin a.z + O~,k!K(t) cos b.z], O~ollK(t) = BC4(A,. o + L218), 
n = 0  

1 12 
g~"li'(t)=BC'~'~lirli'+"r-Sg{.,=o La, + a,--~-+, J + , ~ o l  "]'Z.ih,h._i_,_~, + 4 e x p ( _ b l D t ) }  ' 

{I) _~ ~ t l r , k  ,,..~(t) = B ,_E ~ eh,_,_.-h,+. l .  

By analogy with equations (4.3) and (4.4), the correction terms (4.27) and (4.28) may he written as 

,,x,K (~.g(,:opo~ ,~ ~ L=  ~, , . ' l , ,  =,, po ,,, 2 : {2~o+ 2< (~):<o, + (y)(~),:.oK + 2:.j + (T)(~),:'.< +:~'.~}. 

with the coefficients Cl given by the expressions (4.20), and 

ApK KoP o L z C3 L 3 
~x,.,: (~o)(~){~,(~)~:,o, +,,.,~ + (~)(~) : . 4  

The characteristic functions of these relations are given by 

(4.28) 

(4.29) 

(4.30) 

( ~ ) = ( , )  :._re f~oK = A,.o + "-~ . fi.K \L,I  , : ,  A , .  cos b,z. 

- , , ,  : t  ) tA..o+~) f. sina.z,.,o.K= Ju~,K = f g 0 K f  lOt "~ / ' I l l  sin a,z, 
n=O n k 

:-~rz{ ~ b '~ - ' " ' - ' -  (") } - - +  -~ exp(-bl,  Dt) cos b,z, :'"'~:v.: .:, L ''''+" +,,,-<.]+,=Zo o,~ 

(4.31) 

/ n \  ~ ~' f '~ A 
s-~=t~) =Zo~ =z w"' ) . k l - -  E h k - i - " - h ~ + " ]  s l n  an: ' .  

flol is given by equation (3.44). In Fig. 4, tile functions (4.31) are shown only for the measuring position 
zA = - L / 3  as functions of the reduced time t/r. in the case z = + L/3 the parity of the sine and cosine functions 
have to be taken into account. 

In this sorption model equation (4.4) has to be replaced by equation (4.29), and equation (4.30) must be added 
to equation (4.3). Finally numerical values are given for the same conditions as in equations (4.10) and (4.11) 
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FIG. 4. The characteristic functions (4.31) as functions of the reduced time t/~ for ZA = --L/3. 

/ A ~ . . \  
AxI~K(zA, t) = { " - ' ~ / { - - 2 . 7 7 4 1  X 10-3[f~0K+f~.wK] - 1.4984 • 10-  3f..wK}, 

\ P o  / 

(ApK' )  - a  (,, (2) 
AxlK(z A < 0,t)  = {0.50150+0.64725f(~ 1.5973 x 10-3[f,o,:+2A.,:]-1.4984 x 10 [ f~ , r :+2 ,K]} ,  

\ P o  / 

AXIK(ZA > O,t) = (_~_f_E){O.50150__O.62982f(O)__3.9510x lO-a[fzoK+2f~nK]+ l.4984 • -a (I) (2) lO [fd,,K +f~,,K] }- 
, , . t o /  

(4.32) 
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SOLUTION DE PERTURBATION DE L'EQUATION DE DIFFUSION DANS LE CAS DE LA 
DIFFUSION MUTUELLE NON STATIONNAIRE DE DEUX GAZ REELS ISOCHORES ET 

1SOTHERMES 

R~sumf-- L'~quation de diffusion non stationnaire pour deux gaz r~els isochores et isothermes est r~solue par 
la mfthode de perturbation. En rue d'exp~riences avec i'appareil de Loschmidt, les gradients de pression et de 
tempfrature sont suppo~fs n~gligeables. Sont consid~r~s comme des petites perturbations physiques: la 
d~pendance du coefficient de diffusion D vis-:~-vis de la concentration selon la thforie cin~tique des gaz, le 
changement de pression pendant le mflange de gaz, la sorption des gaz par les cellules de l'appareil et les 
vitesses des ~coulements correspondants. Les r~sultats montrent que la compl~te d~pendance de D vis-fi-vis de 
la concentration peut ~tre d&ermin~e par une seule ou deux experiences de diffusion non stationnaire avec 

deux gaz puts, ce qui est le grand avantage de cette mfthode sur routes les autres. 

LOSUNG DER DIFFUSIONSGLEICHUNG FOR DEN FALL DER GEGENSEITIGEN 
NICHTSTATIONAREN 1SOCHOREN UND ISOTHERMEN DIFFUSION ZWEIER REALER GASE 

DURCH STORUNGSRECIINUNG 

Zusammenfassung--Die Diffusionsgleichung ffir die gegenseitige nichtstation~re isochor-isotherme 
Konzentrationsdiffusion zweier realer Gase wird durch Stfrungsrechnung gel6st. Im Hinblick auf 
entsprechende Experimente in ether Loschmidt-Diffusionsapparatur werden Gradienten im Druck und in 
der Temperatur als vernachlfissigbar klein angenommen. Die Konzentrationsabh~ingigkeit des 
Diffusionskoeffizienten D entsprechend der kinetischen Gastheorie, die Druck-~nderung wfihrend der 
Gasdurchmischung, Gassorption durch die Dichtungen der Diffusionsapparatur und die entsprechenden 
erzeugten Str6mungsgeschwindigkeiten werden als kleine Stfrungen in einer physikalisch sinnvollen Weise 
berficksichtigt. Die Ergebnisse zeigen, daft die vollstfindige Konzentrationsabhfingigkeit von D durch nur ein 
bis zwei nichtstation~ire Diffusionsexperimente mit reinen Gasen bestimmt werdea kann. Dies ist der grol3e 

Vorteil der beschriebenen Methode gegcnfiber allen frfiher benutzten Methoden. 
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P E I I I E H H E  M E T O ~ O M  BO3MYII [EHH~t  Y P A B H E H H ~ t  ~ H ~ O Y 3 H H  ~J]~l 
B 3 A H M H O f l  H E C T A I I I 4 O t t A P t t O / !  1 1 3 O X O P H q E C K O f l  tl  H 3 O T E P M H q E C K O H  

.qHOOY3111t ~ B Y X  P E A J I b t t b I X  FA3OB 

ArtxoTaux~t--MeTO~IOM BosMymem6i pemetto ypaBltemte .fl, llqbqby3111l /Lq~l B3anMlloii lieciattttoilapllofi 
1130xopltqecKo~i ii it30repMiItiect<ofi KOllHelllpalIIloltlloli ,/llttdpqby3tln /layx pea.rlbllblX ra30a. C yqeToM 
yc.qOBHfi, rlplt Ko'rOpblX npoBo~.aTC~ KOtIKpeTtlble 3KcnepiiMenrbl Ila ,/llidpqbyslfomlo,,,t a n n a p a r e  
fiOILlMIt,aTa, c/le.~atto npearlO.rlox<elHte, q l o  rpa./altellibl llaB.qeltn~l II reMlleparypbl npelle6pexllMO Ma.rlbl. 
KomteHrpamtomla~ saal~c~tMoc'rb Ko3dpqbmlite~rl-a /llt~dpy3ntt D B COOTBelc'IBItI! C rm~eTil,~ec~:oii 
reoptlefi ra30B, 113Melleltlle 21aB.rlO1111~l rlpl! CMCIIIIIBalI|IIt raaoB, cop~llll~l rasa  yll.rlOTllellll~l,Mll 2lllqbqby- 
31lOtllloro annapa ' ra  ii CKOpOCTII noroKa ra3a yqllTbIBa.rlllCb 11a OCIIOBe (l)|t311qeCKIIX co06pax.:elllli~ 
KaK Ma.'Ible BO3MylLlelln~t. Pe3y~qbTa'rbl noKa3blnalOT, ' f ro no .n .ym KOtllletllpallllOltllylO 3aBIICIIMOC'I'b 
Ko3qb~lllllielrla O MOZ<IIO onpellenl l lb TO~qbKO II30JlllOrO ltJ'lll .aByX 9KCrlCptlMCII'IOB no iteCTallllOllapllo~ 

221~3dpy3~ftt HffC:TblX ra3oB, q r o  ~BnaeTC~ Ba;,K}IblM npe~x~ymec-rBoM tiCI10.rlb3OBaHHoro MeTo.~a. 


